74 resultados para chloroplasts

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A process that we refer to as control by epistasy of synthesis (CES process) occurs during chloroplast protein biogenesis in Chlamydomonas reinhardtii: the synthesis of some chloroplast-encoded subunits, the CES subunits, is strongly attenuated when some other subunits from the same complex, the dominant subunits, are missing. Herein we investigate the molecular basis of the CES process for the biogenesis of the cytochrome b6f complex and show that negative autoregulation of cytochrome f translation occurs in the absence of other complex subunits. This autoregulation is mediated by an interaction, either direct or indirect, between the 5′ untranslated region of petA mRNA, which encodes cytochrome f, and the C-terminal domain of the unassembled protein. This model for the regulation of cytochrome f translation explains both the decreased rate of cytochrome f synthesis in vivo in the absence of its assembly partners and its increase in synthesis when significant accumulation of the C-terminal domain of the protein is prevented. When expressed from a chimeric mRNA containing the atpA 5′ untranslated region, cytochrome f no longer showed an assembly-dependent regulation of translation. Conversely, the level of antibiotic resistance conferred by a chimeric petA-aadA-rbcL gene was shown to depend on the state of assembly of cytochrome b6f complexes and on the accumulation of the C-terminal domain of cytochrome f. We discuss the possible ubiquity of the CES process in organellar protein biogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genes for σ-like factors of bacterial-type RNA polymerase have not been characterized from any multicellular eukaryotes, although they probably play a crucial role in the expression of plastid photosynthesis genes. We have cloned three distinct cDNAs, designated SIG1, SIG2, and SIG3, for polypeptides possessing amino acid sequences for domains conserved in σ70 factors of bacterial RNA polymerases from the higher plant Arabidopsis thaliana. Each gene is present as one copy per haploid genome without any additional sequences hybridized in the genome. Transient expression assays using green fluorescent protein demonstrated that N-terminal regions of the SIG2 and SIG3 ORFs could function as transit peptides for import into chloroplasts. Transcripts for all three SIG genes were detected in leaves but not in roots, and were induced in leaves of dark-adapted plants in rapid response to light illumination. Together with results of our previous analysis of tissue-specific regulation of transcription of plastid photosynthesis genes, these results indicate that expressed levels of the genes may influence transcription by regulating RNA polymerase activity in a green tissue-specific manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal recognition particles (SRPs) in the cytosols of prokaryotes and eukaryotes are used to target proteins to cytoplasmic membranes and the endoplasmic reticulum, respectively. The mechanism of targeting relies on cotranslational SRP binding to hydrophobic signal sequences. An organellar SRP identified in chloroplasts (cpSRP) is unusual in that it functions posttranslationally to localize a subset of nuclear-encoded thylakoid proteins. In assays that reconstitute thylakoid integration of the light harvesting chlorophyll-binding protein (LHCP), stromal cpSRP binds LHCP posttranslationally to form a cpSRP/LHCP transit complex, which is believed to represent the LHCP form targeted to thylakoids. In this investigation, we have identified an 18-aa sequence motif in LHCP (L18) that, along with a hydrophobic domain, is required for transit complex formation. Fusion of L18 to the amino terminus of an endoplasmic reticulum-targeted protein, preprolactin, led to transit complex formation whereas wild-type preprolactin exhibited no ability to form a transit complex. In addition, a synthetic L18 peptide, which competed with LHCP for transit complex formation, caused a parallel inhibition of LHCP integration. Translocation of proteins by the thylakoid Sec and Delta pH transport systems was unaffected by the highest concentration of L18 peptide examined. Our data indicate that a motif contained in L18 functions in precursor recruitment to the posttranslational SRP pathway, one of at least four different thylakoid sorting pathways used by chloroplasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5,000–10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chloroplast gene rbcL encodes the large subunit of the CO2-fixing enzyme ribulose-bisphosphate carboxylase. In previous work a target for photo-accelerated degradation of Chlamydomonas reinhardtii rbcL transcripts in vivo was found to lie within the first 63 nucleotides, and a sequence element required for increasing the longevity of transcripts of rbcL-reporter genes was found to occur between nucleotides 170 and 350. Photo-accelerated degradation of rbcL transcripts has been found to require nucleotides 21 to 41. Transcript nucleotides lying between 329 and 334 and between 14 and 27 are essential for stabilizing transcripts in vivo; mutations in either region reduce the longevity of transcripts. It is postulated that the effectiveness of photo-accelerated endonuclease attacks on the nucleotide 21 to 41 region is reduced by physical blockage or distortion of the target sequence by interacting proteins that associate with nucleotides in the 14 to 27 and 329 to 334 regions of the transcripts. Both the nucleotide +329 to +334 stabilizing sequence of rbcL and a transcription enhancing sequence that lies between +126 and +170 encode well conserved (cyanobacteria through angiosperms) amino acid sequences; the evolution of expression control elements within the protein coding sequence of rbcL is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed the kinetics of nonphotochemical quenching of chlorophyll fluorescence (qN) in spinach (Spinacia oleracea) leaves, chloroplasts, and purified light-harvesting complexes. The characteristic biphasic pattern of fluorescence quenching in dark-adapted leaves, which was removed by preillumination, was evidence of light activation of qN, a process correlated with the de-epoxidation state of the xanthophyll cycle carotenoids. Chloroplasts isolated from dark-adapted and light-activated leaves confirmed the nature of light activation: faster and greater quenching at a subsaturating transthylakoid pH gradient. The light-harvesting chlorophyll a/b-binding complexes of photosystem II were isolated from dark-adapted and light-activated leaves. When isolated from light-activated leaves, these complexes showed an increase in the rate of quenching in vitro compared with samples prepared from dark-adapted leaves. In all cases, the quenching kinetics were fitted to a single component hyperbolic function. For leaves, chloroplasts, and light-harvesting complexes, the presence of zeaxanthin was associated with an increased rate constant for the induction of quenching. We discuss the significance of these observations in terms of the mechanism and control of qN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexose export from chloroplasts at night has been inferred in previous studies of mutant and transgenic plants. We have tested whether hexose export is the normal route of carbon export from chloroplasts at night. We used nuclear magnetic resonance to distinguish glucose (Glc) made from hexose export and Glc made from triose export. Glc synthesized in vitro from fructose-6-phosphate in the presence of deuterium-labeled water had deuterium incorporated at C-2, whereas synthesis from triose phosphates caused C-2 through C-5 to become deuterated. In both tomato (Lycopersicon esculentum L.) and bean (Phaseolus vulgaris L.), Glc from sucrose made at night in the presence of deuterium-enriched water was deuterated only in the C-2 position, indicating that >75% of carbon is exported as hexoses at night. In darkness the phosphate in the cytosol was 28 mm, whereas that in the chloroplasts was 5 mm, but hexose phosphates were 10-fold higher in the cytosol than in the chloroplasts. Therefore, hexose phosphates would not move out of chloroplasts without the input of energy. We conclude that most carbon leaves chloroplasts at night as Glc, maltose, or higher maltodextrins under normal conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plastid rRNA (rrn) operon in chloroplasts of tobacco (Nicotiana tabacum), maize, and pea is transcribed by the plastid-encoded plastid RNA polymerase from a ς70-type promoter (P1). In contrast, the rrn operon in spinach (Spinacia oleracea) and mustard chloroplasts is transcribed from the distinct Pc promoter, probably also by the plastid-encoded plastid RNA polymerase. Primer-extension analysis reported here indicates that in Arabidopsis both promoters may be active. To understand promoter selection in the plastid rrn operon in the different species, we have tested transcription from the spinach rrn promoter in transplastomic tobacco and from the tobacco rrn promoter in transplastomic Arabidopsis. Our data suggest that transcription of the rrn operon depends on species-specific factors that facilitate transcription initiation by the general transcription machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mg-chelatase catalyzes the ATP-dependent insertion of Mg2+ into protoporphyrin-IX to form Mg-protoporphyrin-IX. This is the first step unique to chlorophyll synthesis, and it lies at the branch point for porphyrin utilization; the other branch leads to heme. Using the stromal fraction of pea (Pisum sativum L. cv Spring) chloroplasts, we have prepared Mg-chelatase in a highly active (1000 pmol 30 min−1 mg−1) and stable form. The reaction had a lag in the time course, which was overcome by preincubation with ATP. The concentration curves for ATP and Mg2+ were sigmoidal, with apparent Km values for Mg2+ and ATP of 14.3 and 0.35 mm, respectively. The Km for deuteroporphyrin was 8 nm. This Km is 300 times lower than the published porphyrin Km for ferrochelatase. The soluble extract was separated into three fractions by chromatography on blue agarose, followed by size-selective centrifugal ultrafiltration of the column flow-through. All three fractions were required for activity, clearly demonstrating that the plant Mg-chelatase requires at least three protein components. Additionally, only two of the components were required for activation; both were contained in the flow-through from the blue-agarose column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mass-spectrometric disequilibrium analysis was applied to investigate CO2 uptake and HCO3− transport in cells and chloroplasts of the microalgae Dunaliella tertiolecta and Chlamydomonas reinhardtii, which were grown in air enriched with 5% (v/v) CO2 (high-Ci cells) or in ambient air (low-Ci cells). High- and low-Ci cells of both species had the capacity to transport CO2 and HCO3−, with maximum rates being largely unaffected by the growth conditions. In high- and low-Ci cells of D. tertiolecta, HCO3− was the dominant inorganic C species taken up, whereas HCO3− and CO2 were used at similar rates by C. reinhardtii. The apparent affinities of HCO3− transport and CO2 uptake increased 3- to 9-fold in both species upon acclimation to air. Photosynthetically active chloroplasts isolated from both species were able to transport CO2 and HCO3−. For chloroplasts from C. reinhardtii, the concentrations of HCO3− and CO2 required for half-maximal activity declined from 446 to 33 μm and 6.8 to 0.6 μm, respectively, after acclimation of the parent cells to air; the corresponding values for chloroplasts from D. tertiolecta decreased from 203 to 58 μm and 5.8 to 0.5 μm, respectively. These results indicate the presence of inducible high-affinity HCO3− and CO2 transporters at the chloroplast envelope membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenomenon of RNA editing has been found to occur in chloroplasts of several angiosperm plants. Comparative analysis of the entire nucleotide sequence of a gymnosperm [Pinus thunbergii (black pine)] chloroplast genome allowed us to predict several potential editing sites in its transcripts. Forty-nine such sites from 14 genes/ORFs were analyzed by sequencing both cDNAs from the transcripts and the corresponding chloroplast DNA regions, and 26 RNA editing sites were identified in the transcripts from 12 genes/ORFs, indicating that chloroplast RNA editing is not restricted to angiosperms but occurs in the gymnosperm, too. All the RNA editing events are C-to-U conversions; however, many new codon substitutions and creation of stop codons that have not so far been reported in angiosperm chloroplasts were observed. The most striking is that two editing events result in the creation of an initiation and a stop codon within a single transcript, leading to the formation of a new reading frame of 33 codons. The predicted product is highly homologous to that deduced from the ycf7 gene (ORF31), which is conserved in the chloroplast genomes of many other plant species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosynthetic carbon metabolism is initiated by ribulose-bisphosphate carboxylase/oxygenase (Rubisco), which uses both CO2 and O2 as substrates. One 2-phosphoglycolate (P-glycolate) molecule is produced for each O2 molecule fixed. P-glycolate has been considered to be metabolized exclusively via the oxidative photosynthetic carbon cycle. This paper reports an additional pathway for P-glycolate and glycolate metabolism in the chloroplasts. Light-dependent glycolate or P-glycolate oxidation by osmotically shocked chloroplasts from the algae Dunaliella or spinach leaves was measured by three electron acceptors, methyl viologen (MV), potassium ferricyanide, or dichloroindophenol. Glycolate oxidation was assayed with 3-(3,4)-dichlorophenyl)-1,1-dimethylurea (DCMU) as oxygen uptake in the presence of MV at a rate of 9 mol per mg of chlorophyll per h. Washed thylakoids from spinach leaves oxidized glycolate at a rate of 22 mol per mg of chlorophyll per h. This light-dependent oxidation was inhibited completely by SHAM, an inhibitor of quinone oxidoreductase, and 75% by 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which inhibits electron transfer from plastoquinone to the cytochrome b6f complex. SHAM stimulated severalfold glycolate excretion by algal cells, Dunaliella or Chlamydomonas, and by isolated Dunaliella chloroplasts. Glycolate and P-glycolate were oxidized about equally well to glyoxylate and phosphate. On the basis of results of inhibitor action, the possible site which accepts electrons from glycolate or P-glycolate is a quinone after the DCMU site but before the DBMIB site. This glycolate oxidation is a light-dependent, SHAM-sensitive, glycolate-quinone oxidoreductase system that is associated with photosynthetic electron transport in the chloroplasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced the red light-stimulated fluorescence quenching by up to 50%. In contrast, added blue light did not alter the red light-stimulated quenching from abaxial (lower) guard cells. This response pattern paralleled the blue light sensitivity of stomatal opening in the two leaf surfaces. An action spectrum for the blue light-induced enhancement of the red light-stimulated quenching showed a major peak at 450 nm and two minor peaks at 420 and 470 nm. This spectrum matched closely an action spectrum for blue light-stimulated stomatal opening. Coleoptile chloroplasts also showed an enhancement by blue light of red light-stimulated quenching. The action spectrum of this response, showing a major peak at 450 nm, a minor peak at 470 nm, and a shoulder at 430 nm, closely matched an action spectrum for blue light-stimulated coleoptile phototropism. Both action spectra match the absorption spectrum of zeaxanthin, a chloroplastic carotenoid recently implicated in blue light photoreception of both guard cells and coleoptiles. The remarkable similarity between the action spectra for the blue light responses of guard cells and coleoptile chloroplasts and the spectra for blue light-stimulated stomatal opening and phototropism, coupled to the recently reported evidence on a role of zeaxanthin in blue light photoreception, indicates that the guard cell and coleoptile chloroplasts specialize in sensory transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using tobacco plants that had been transformed with the cDNA for glycerol-3-phosphate acyltransferase, we have demonstrated that chilling tolerance is affected by the levels of unsaturated membrane lipids. In the present study, we examined the effects of the transformation of tobacco plants with cDNA for glycerol-3-phosphate acyltransferase from squash on the unsaturation of fatty acids in thylakoid membrane lipids and the response of photosynthesis to various temperatures. Of the four major lipid classes isolated from the thylakoid membranes, phosphatidylglycerol showed the most conspicuous decrease in the level of unsaturation in the transformed plants. The isolated thylakoid membranes from wild-type and transgenic plants did not significantly differ from each other in terms of the sensitivity of photosystem II to high and low temperatures and also to photoinhibition. However, leaves of the transformed plants were more sensitive to photoinhibition than those of wild-type plants. Moreover, the recovery of photosynthesis from photoinhibition in leaves of wild-type plants was faster than that in leaves of the transgenic tobacco plants. These results suggest that unsaturation of fatty acids of phosphatidylglycerol in thylakoid membranes stabilizes the photosynthetic machinery against low-temperature photoinhibition by accelerating the recovery of the photosystem II protein complex.