68 resultados para chelicerates, nervous system, development, axonal pathfinding, midline

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many features of Down syndrome might result from the overdosage of only a few genes located in a critical region of chromosome 21. To search for these genes, cosmids mapping in this region were isolated and used for trapping exons. One of the trapped exons obtained has a sequence very similar to part of the Drosophila single-minded (sim) gene, a master regulator of the early development of the fly central nervous system midline. Mapping data indicated that this exonic sequence is only present in the Down syndrome-critical region in the human genome. Hybridization of this exonic sequence with human fetal kidney poly(A)+ RNA revealed two transcripts of 6 and 4.3 kb. In situ hybridization of a probe derived from this exon with human and rat fetuses showed that the corresponding gene is expressed during early fetal life in the central nervous system and in other tissues, including the facial, skull, palate, and vertebra primordia. The expression pattern of this gene suggests that it might be involved in the pathogenesis of some of the morphological features and brain anomalies observed in Down syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new members of the fibroblast growth factor (FGF) family, referred to as fibroblast growth factor homologous factors (FHFs), have been identified by a combination of random cDNA sequencing, data base searches, and degenerate PCR. Pairwise comparisons between the four FHFs show between 58% and 71% amino acid sequence identity, but each FHF shows less than 30% identity when compared with other FGFs. Like FGF-1 (acidic FGF) and FGF-2 (basic FGF), the FHFs lack a classical signal sequence and contain clusters of basic residues that can act as nuclear localization signals. In transiently transfected 293 cells FHF-1 accumulates in the nucleus and is not secreted. Each FHF is expressed in the developing and adult nervous systems, suggesting a role for this branch of the FGF family in nervous system development and function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several human neurological disorders are associated with proteins containing abnormally long runs of glutamine residues. Strikingly, most of these proteins contain two or more additional long runs of amino acids other than glutamine. We screened the current human, mouse, Drosophila, yeast, and Escherichia coli protein sequence data bases and identified all proteins containing multiple long homopeptides. This search found multiple long homopeptides in about 12% of Drosophila proteins but in only about 1.7% of human, mouse, and yeast proteins and none among E. coli proteins. Most of these sequences show other unusual sequence features, including multiple charge clusters and excessive counts of homopeptides of length > or = two amino acid residues. Intriguingly, a large majority of the identified Drosophila proteins are essential developmental proteins and, in particular, most play a role in central nervous system development. Almost half of the human and mouse proteins identified are homeotic homologs. The role of long homopeptides in fine-tuning protein conformation for multiple functional activities is discussed. The relative contributions of strand slippage and of dynamic mutation are also addressed. Several new experiments are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Drosophila, the chromosomal region 75C1–2 contains at least three genes, reaper (rpr), head involution defective (hid), and grim, that have important functions in the activation of programmed cell death. To better understand how cells are killed by these genes, we have utilized a well defined set of embryonic central nervous system midline cells that normally exhibit a specific pattern of glial cell death. In this study we show that both rpr and hid are expressed in dying midline cells and that the normal pattern of midline cell death requires the function of multiple genes in the 75C1–2 interval. We also utilized the P[UAS]/P[Gal4] system to target expression of rpr and hid to midline cells. Targeted expression of rpr or hid alone was not sufficient to induce ectopic midline cell death. However, expression of both rpr and hid together rapidly induced ectopic midline cell death that resulted in axon scaffold defects characteristic of mutants with abnormal midline cell development. Midline-targeted expression of the baculovirus p35 protein, a caspase inhibitor, blocked both normal and ectopic rpr- and hid-induced cell death. Taken together, our results suggest that rpr and hid are expressed together and cooperate to induce programmed cell death during development of the central nervous system midline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although it is believed that little recovery occurs after adult mammalian spinal cord injury, in fact significant spontaneous functional improvement commonly occurs after spinal cord injury in humans. To investigate potential mechanisms underlying spontaneous recovery, lesions of defined components of the corticospinal motor pathway were made in adult rats in the rostral cervical spinal cord or caudal medulla. Following complete lesions of the dorsal corticospinal motor pathway, which contains more than 95% of all corticospinal axons, spontaneous sprouting from the ventral corticospinal tract occurred onto medial motoneuron pools in the cervical spinal cord; this sprouting was paralleled by functional recovery. Combined lesions of both dorsal and ventral corticospinal tract components eliminated sprouting and functional recovery. In addition, functional recovery was also abolished if dorsal corticospinal tract lesions were followed 5 weeks later by ventral corticospinal tract lesions. We found extensive spontaneous structural plasticity as a mechanism correlating with functional recovery in motor systems in the adult central nervous system. Experimental enhancement of spontaneous plasticity may be useful to promote further recovery after adult central nervous system injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immune cells invading the central nervous system (CNS) in response to Borna disease virus (BDV) antigens are central to the pathogenesis of Borna disease (BD). We speculate that the response of the resident cells of the brain to infection may be involved in the sensitization and recruitment of these inflammatory cells. To separate the responses of resident cells from those of cells infiltrating from the periphery, we used dexamethasone to inhibit inflammatory reactions in BD. Treatment with dexamethasone prevented the development of clinical signs of BD, and the brains of treated animals showed no neuropathological lesions and a virtual absence of markers of inflammation, cell infiltration, or activation normally seen in the CNS of BDV-infected rats. In contrast, treatment with dexamethasone exacerbated the expression of BDV RNA, which was paralleled by a similarly elevated expression of mRNAs for egr-1, c-fos, and c-jun. Furthermore, dexamethasone failed to inhibit the increase in expression of mRNAs for tumor necrosis factor α, macrophage inflammatory protein 1β, interleukin 6, and mob-1, which occurs in the CNS of animals infected with BDV. Our findings suggest that these genes, encoding transcription factors, chemokines, and proinflammatory cytokines, might be directly activated in CNS resident cells by BDV. This result supports the hypothesis that the initial phase of the inflammatory response to BDV infection in the brain may be dependent upon virus-induced activation of CNS resident cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Targeted expression of foreign genes to the peripheral nervous system is interesting for many applications, including gene therapy of neuromuscular diseases, neuroanatomical studies, and elucidation of mechanisms of axonal flow. Here we describe a microneurosurgical technique for injection of replication-defective viral vectors into dorsal root ganglia (DRG). Adenovirus- and adeno-associated virus-based vectors with transcriptional competence for DRG neurons led to expression of the gene of interest throughout the first neuron of the sensory system, from the distal portions of the respective sensory nerve to the ipsilateral nucleus gracilis and cuneatus, which contains the synapses to the spinothalamic tracts. Use of Rag-1 ablated mice, which lack all B and T lymphocytes, allowed for sustained expression for periods exceeding 100 days. In immunocompetent mice, long-term (52 days) expression was achieved with similar efficiency by using adeno-associated viral vectors. DRG injection was vastly superior to intraneural injection into the sciatic nerve, which mainly transduced Schwann cells in the vicinity of the site of inoculation site but only inefficiently transduced nerve fibers, whereas i.m. injection did not lead to any significant expression of the reporter gene in nerve fibers. The versatile and efficient transduction of genes of interest should enable a wide variety of functional studies of peripheral nervous system pathophysiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The high incidence of neurological disorders in patients afflicted with acquired immunodeficiency syndrome (AIDS) may result from human immunodeficiency virus type 1 (HIV-1) induction of chemotactic signals and cytokines within the brain by virus-encoded gene products. Transforming growth factor beta1 (TGF-beta1) is an immunomodulator and potent chemotactic molecule present at elevated levels in HIV-1-infected patients, and its expression may thus be induced by viral trans-activating proteins such as Tat. In this report, a replication-defective herpes simplex virus (HSV)-1 tat gene transfer vector, dSTat, was used to transiently express HIV-1 Tat in glial cells in culture and following intracerebral inoculation in mouse brain in order to directly determine whether Tat can increase TGF-beta1 mRNA expression. dSTat infection of Vero cells transiently transfected by a panel of HIV-1 long terminal repeat deletion mutants linked to the bacterial chloramphenicol acetyltransferase reporter gene demonstrated that vector-expressed Tat activated the long terminal repeat in a trans-activation response element-dependent fashion independent of the HSV-mediated induction of the HIV-1 enhancer, or NF-kappaB domain. Northern blot analysis of human astrocytic glial U87-MG cells transfected by dSTat vector DNA resulted in a substantial increase in steady-state levels of TGF-beta1 mRNA. Furthermore, intracerebral inoculation of dSTat followed by Northern blot analysis of whole mouse brain RNA revealed an increase in levels of TGF-beta1 mRNA similar to that observed in cultured glial cells transfected by dSTat DNA. These results provided direct in vivo evidence for the involvement of HIV-1 Tat in activation of TGF-beta1 gene expression in brain. Tat-mediated stimulation of TGF-beta1 expression suggests a novel pathway by which HIV-1 may alter the expression of cytokines in the central nervous system, potentially contributing to the development of AIDS-associated neurological disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural connections in the adult central nervous system are highly precise. In the visual system, retinal ganglion cells send their axons to target neurons in the lateral geniculate nucleus (LGN) in such a way that axons originating from the two eyes terminate in adjacent but nonoverlapping eye-specific layers. During development, however, inputs from the two eyes are intermixed, and the adult pattern emerges gradually as axons from the two eyes sort out to form the layers. Experiments indicate that the sorting-out process, even though it occurs in utero in higher mammals and always before vision, requires retinal ganglion cell signaling; blocking retinal ganglion cell action potentials with tetrodotoxin prevents the formation of the layers. These action potentials are endogenously generated by the ganglion cells, which fire spontaneously and synchronously with each other, generating "waves" of activity that travel across the retina. Calcium imaging of the retina shows that the ganglion cells undergo correlated calcium bursting to generate the waves and that amacrine cells also participate in the correlated activity patterns. Physiological recordings from LGN neurons in vitro indicate that the quasiperiodic activity generated by the retinal ganglion cells is transmitted across the synapse between ganglion cells to drive target LGN neurons. These observations suggest that (i) a neural circuit within the immature retina is responsible for generating specific spatiotemporal patterns of neural activity; (ii) spontaneous activity generated in the retina is propagated across central synapses; and (iii) even before the photoreceptors are present, nerve cell function is essential for correct wiring of the visual system during early development. Since spontaneously generated activity is known to be present elsewhere in the developing CNS, this process of activity-dependent wiring could be used throughout the nervous system to help refine early sets of neural connections into their highly precise adult patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin alpha, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin alpha in autoimmune tissue damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytokines are now recognized to play important roles in the physiology of the central nervous system (CNS) during health and disease. Tumor necrosis factor alpha (TNF-alpha) has been implicated in the pathogenesis of several human CNS disorders including multiple sclerosis, AIDS dementia, and cerebral malaria. We have generated transgenic mice that constitutively express a murine TNF-alpha transgene, under the control of its own promoter, specifically in their CNS and that spontaneously develop a chronic inflammatory demyelinating disease with 100% penetrance from around 3-8 weeks of age. High-level expression of the transgene was seen in neurons distributed throughout the brain. Disease is manifested by ataxia, seizures, and paresis and leads to early death. Histopathological analysis revealed infiltration of the meninges and CNS parenchyma by CD4+ and CD8+ T lymphocytes, widespread reactive astrocytosis and microgliosis, and focal demyelination. The direct action of TNF-alpha in the pathogenesis of this disease was confirmed by peripheral administration of a neutralizing anti-murine TNF-alpha antibody. This treatment completely prevented the development of neurological symptoms, T-cell infiltration into the CNS parenchyma, astrocytosis, and demyelination, and greatly reduced the severity of reactive microgliosis. These results demonstrate that overexpression of TNF-alpha in the CNS can cause abnormalities in nervous system structure and function. The disease induced in TNF-alpha transgenic mice shows clinical and histopathological features characteristic of inflammatory demyelinating CNS disorders in humans, and these mice represent a relevant in vivo model for their further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grafts of favorable axonal growth substrates were combined with transient nerve growth factor (NGF) infusions to promote morphological and functional recovery in the adult rat brain after lesions of the septohippocampal projection. Long-term septal cholinergic neuronal rescue and partial hippocampal reinnervation were achieved, resulting in partial functional recovery on a simple task assessing habituation but not on a more complex task assessing spatial reference memory. Control animals that received transient NGF infusions without axonal-growth-promoting grafts lacked behavioral recovery but also showed long-term septal neuronal rescue. These findings indicate that (i) partial recovery from central nervous system injury can be induced by both preventing host neuronal loss and promoting host axonal regrowth and (ii) long-term neuronal loss can be prevented with transient NGF infusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nontoxic proteolytic C fragment of tetanus toxin (TTC peptide) has the same ability to bind nerve cells and be retrogradely transported through a synapse as the native toxin. We have investigated its potential use as an in vivo neurotropic carrier. In this work we show that a hybrid protein encoded by the lacZ–TTC gene fusion retains the biological functions of both proteins in vivo—i.e., retrograde transynaptic transport of the TTC fragment and β-galactosidase enzymatic activity. After intramuscular injection, enzymatic activity could be detected in motoneurons and connected neurons of the brainstem areas. This strategy could be used to deliver a biological activity to neurons from the periphery to the central nervous system. Such a hybrid protein could also be used to map synaptic connections between neural cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice deficient for plasminogen exhibit a variety of pathologies, all of which examined to date are reversed when the animals are also made fibrin(ogen) deficient. These results suggested that the predominant, and perhaps exclusive, physiological role of plasminogen is clearance of fibrin. Plasminogen-deficient mice also display resistance to excitotoxin-induced neurodegeneration, in contrast with wild-type mice, which are sensitive. Based on the genetic interaction between plasminogen and fibrinogen, we investigated whether resistance to neuronal cell death in the plasminogen-deficient mice is dependent on fibrin(ogen). Unexpectedly, mice lacking both plasminogen and fibrinogen are resistant to neurodegeneration to levels comparable to plasminogen-deficient mice. Therefore, plasmin acts on substrates other than fibrin during experimental neuronal degeneration, and may function similarly in other pathological settings in the central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigate the mRNA expression of inhibitory factor κBα (IκBα) in cells of the rat brain induced by an intraperitoneal (i.p.) injection of lipopolysaccharide (LPS). IκB controls the activity of nuclear factor κB, which regulates the transcription of many immune signal molecules. The detection of IκB induction, therefore, would reveal the extent and the cellular location of brain-derived immune molecules in response to peripheral immune challenges. Low levels of IκBα mRNA were found in the large blood vessels and in circumventricular organs (CVOs) of saline-injected control animals. After an i.p. LPS injection (2.5 mg/kg), dramatic induction of IκBα mRNA occurred in four spatio-temporal patterns. Induced signals were first detected at 0.5 hr in the lumen of large blood vessels and in blood vessels of the choroid plexus and CVOs. Second, at 1–2 hr, labeling dramatically increased in the CVOs and choroid plexus and spread to small vascular and glial cells throughout the entire brain; these responses peaked at 2 hr and declined thereafter. Third, cells of the meninges became activated at 2 hr and persisted until 12 hr after the LPS injection. Finally, only at 12 hr, induced signals were present in ventricular ependyma. Thus, IκBα mRNA is induced in brain after peripheral LPS injection, beginning in cells lining the blood side of the blood–brain barrier and progressing to cells inside brain. The spatiotemporal patterns suggest that cells of the blood–brain barrier synthesize immune signal molecules to activate cells inside the central nervous system in response to peripheral LPS. The cerebrospinal fluid appears to be a conduit for these signal molecules.