24 resultados para ceramide trihexoside

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endothelial isoform of NO synthase (eNOS) is targeted to sphingolipid-enriched signal-transducing microdomains in the plasma membrane termed caveolae. Among the caveolae-targeted sphingolipids are the ceramides, a class of acylated sphingosine compounds that have been implicated in diverse cellular responses. We have explored the role of ceramide analogues in eNOS signaling in cultured bovine aortic endothelial cells (BAEC). Addition of the ceramide analogue N-acetylsphingosine (C2-ceramide; 5 μM) to intact BAEC leads to a significant increase in NO synthase activity (assayed by using the fluorescent indicator 4,5-diaminofluorescein) and translocation of eNOS from the endothelial cell membrane to intracellular sites (measured by using quantitative immunofluorescence techniques); the biologically inactive ceramide N-acetyldihydrosphingosine is entirely without effect. C2-ceramide-induced eNOS activation and translocation are unaffected by the intracellular calcium chelator 1,2-bis-o-aminophenoxyethane-N,N,N′,N′-tetraacetic acid (BAPTA). Using the calcium-specific fluorescent indicator fluo-3, we also found that C2-ceramide activation of eNOS is unaccompanied by a drug-induced increase in intracellular calcium. These findings stand in sharp contrast to the mechanism by which bradykinin, estradiol, and other mediators acutely activate eNOS, in which a rapid, agonist-promoted increase in intracellular calcium is required. Finally, we show that treatment of BAEC with bradykinin causes a significant increase in cellular ceramide content; the response to bradykinin has an EC50 of 3 nM and is blocked by the bradykinin B2-receptor antagonist HOE140. Bradykinin-induced ceramide generation could represent a mechanism for longer-term regulation of eNOS activity. Our results suggest that ceramide functions independently of Ca2+-regulated pathways to promote activation and translocation of eNOS, and that this lipid mediator may represent a physiological regulator of eNOS in vascular endothelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fas receptor is one of a number of important physiological inducers of programmed cell death (apoptosis). Current models for regulation of this process involve rapid conversion of sphingomyelin to ceramide by cellular sphingomyelinases. Induced changes in cellular levels of such sphingosine-based ceramides are normally extrapolated from measurements of sphingomyelinase activity or following their conversion to ceramide phosphate by treatment of cellular lipid extracts with bacterial diacylglycerol kinase (DAGK). To allow direct study of cellular sphingosine- and sphinganine-based ceramide levels, we developed a mass spectrometric technique capable of determining inducible changes in both overall ceramide levels and species distribution in cellular lipid preparations. Contrary to current models, we detected no changes in cellular ceramide levels up to 2 hr poststimulation of Jurkat T cells with an anti-Fas IgM, although this treatment did induce apoptosis. We also determined in the same system that, when utilizing the DAGK assay, increased phosphorylation of substrates that comigrated with ceramide standards was apparent but that this effect was due to an enhancement of DAGK activity rather than increases in levels of cellular ceramides as substrates per se. Thus, the first direct measurement of ceramides present in cells undergoing apoptosis indicates that, insofar as it can be measured, the induction of apoptosis does not involve the generation of sphingosine-based ceramides, contrary to many published accounts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The n-type K+ channel (n-K+, Kv1.3) in lymphocytes has been recently implicated in the regulation of Fas-induced programmed cell death. Here, we demonstrate that ceramide, a lipid metabolite synthesized upon Fas receptor ligation, inhibits n-K+ channel activity and induces a tyrosine phosphorylation of the Kv1.3 protein in Jurkat T lymphocytes. Tyrosine phosphorylation of the n-K+ channel correlated with an activation of the Src-like tyrosine kinase p56lck upon cellular treatment with the ceramide analog C6-ceramide. Because genetic deficiency of p56lck or inhibition of Src-like tyrosine kinases by herbimycin A prevented ceramide-mediated n-K+ channel inhibition and tyrosine phosphorylation, we propose a ceramide-initiated activation of p56lck resulting in tyrosine phosphorylation and inhibition of the n-K+ channel protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis triggered by death receptors proceeds after defined signal-transduction pathways. Whether signaling at the receptor level is regulated by intracellular messengers is still unknown. We have investigated the role of two messengers, ceramide and nitric oxide (NO), on the apoptotic pathway activated in human monocytic U937 cells by tumor necrosis factor-α (TNF-α) working at its p55 receptor. Two transduction events, the receptor recruitment of the adapter protein, TRADD, and the activation of the initiator caspase, caspase 8, were investigated. When administered alone, neither of the messengers had any effect on these events. In combination with TNF-α, however, ceramide potentiated, whereas NO inhibited, TNF-α-induced TRADD recruitment and caspase 8 activity. The effect of NO, which was cGMP-dependent, was due to inhibition of the TNF-α-induced generation of ceramide. Our results identify a mechanism of regulation of a signal-transduction pathway activated by death receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin 1 is the prototype of an inflammatory cytokine, and evidence suggests that it uses the sphingomyelin pathway and ceramide production to trigger mitogen-activated protein kinase (MAPK) activation and subsequent gene expression required for acute inflammatory processes. To identify downstream signaling targets of ceramide, a radioiodinated photoaffinity labeling analog of ceramide ([125I] 3-trifluoromethyl-3-(m-iodophenyl)diazirine-ceramide) was employed. It is observed that ceramide specifically binds to and activates protein kinase c-Raf, leading to a subsequent activation of the MAPK cascade. Ceramide does not bind to any other member of the MAPK module nor does it bind to protein kinase C-zeta. These data identify protein kinase c-Raf as a specific molecular target for interleukin 1 beta-stimulated ceramide formation and demonstrate that ceramide is a lipid cofactor participating in regulation of c-Raf activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramide, a product of sphingomyelin turn-over, has been proposed as a novel lipid second messenger with specific roles in mediating antiproliferative responses including apoptosis and cell cycle arrest. In this study, we examine the relationship between the ceramide-mediated pathway of growth suppression and the bcl-2 protooncogene. In ALL-697 leukemia cells, the addition of the chemotherapeutic agent vincristine resulted in a time-dependent growth suppression characterized by marked apoptosis. The effects of vincristine on cell death were preceded by a prolonged and sustained accumulation of endogenous ceramide levels reaching -10.4 pmol ceramide/nmol phospholipids at 12 hr following the addition of vincristine--an increase of 220% over vehicle-treated cells. Overexpression of bcl-2 resulted in near total protection of cell death in response to vincristine. However, the ceramide response to vincristine was not modulated by overexpression of bcl-2, indicating that bcl-2 does not interfere with ceramide formation. Overexpression of bcl-2 prevented apoptosis in response to ceramide, suggesting that bcl-2 acts at a point downstream of ceramide. On the other hand, bcl-2 did not interfere with the ability of ceramide to activate the retinoblastoma gene product or to induce cell cycle arrest, suggesting that the effects of ceramide on cell cycle arrest can be dissociated from the effects on apoptosis. These studies suggest that ceramide and bcl-2 partake in a common pathway of cell regulation. The results also cast ceramide as a gauge of cell injury rather than an "executor" of cell death with clearly dissociable biological outcomes of its action depending on downstream factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have isolated a cDNA encoding human ceramide glucosyltransferase (glucosylceramide synthase, UDP-glucose:N-acylsphingosine D-glucosyltransferase, EC 2.4.1.80) by expression cloning using as a recipient GM-95 cells lacking the enzyme. The enzyme catalyzes the first glycosylation step of glycosphingolipid synthesis and the product, glucosylceramide, serves as the core of more than 300 glycosphingolipids. The cDNA has a G+C-rich 5' untranslated region of 290 nucleotides and the open reading frame encodes 394 amino acids (44.9 kDa). A hydrophobic segment was found near the N terminus that is the potential signal-anchor sequence. In addition, considerable hydrophobicity was detected in the regions close to the C terminus, which may interact with the membrane. A catalytically active enzyme was produced from Escherichia coli transfected with the cDNA. Northern blot analysis revealed a single transcript of 3.5 kb, and the mRNA was widely expressed in organs. The amino acid sequence of ceramide glucosyltransferase shows no significant homology to ceramide galactosyltransferase, which indicates different evolutionary origins of these enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramide has been identified as a potential second messenger that may mediate cell differentiation and apoptosis after exposure to hormonal agonists such as 1 alpha, 25-dihydroxyvitamin D3, tumor necrosis factor alpha, or gamma-interferon. The secondary cellular events that follow ceramide generation remain undefined. We report that in NIH WT-3T3 cells, ceramide induces an enhancement of gene transcription of alpha B-crystallin, a small heat shock protein. The levels of alpha B-crystallin, as measured by Northern blot and immunoblot analyses, were increased by the addition of an exogenous short-chain ceramide, N-acetylsphingosine, or by increasing endogenous intracellular ceramide by inhibition of glucosylceramide synthase. Similar effects were not seen in the expression of the closely related gene, Hsp25. To ascertain whether ceramide-mediated gene transcription was a feature of the heat shock response, cell ceramide was measured in heat shocked cells and observed to be elevated 2-fold immediately upon the return of cells to 37 degrees C. Thus ceramide formed after heat shock treatment of 3T3 cells may mediate the transcription events associated with the cell stress response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triggering of the Fas/APO-1 cell-surface receptor induces apoptosis through an uncharacterized chain of events. Exposure of Fas-sensitive cells to an agonist monoclonal antibody induced cell death and a 200-300% elevation in endogenous levels of the sphingolipid ceramide, a proposed intracellular mediator of apoptosis. In contrast, similar treatment of Fas-resistant cells caused insignificant changes in ceramide levels. Because resistant cell lines expressed the Fas antigen, these results indicate that these cells have a defect in the proximal signaling events leading to ceramide generation. Exposure of the resistant cell lines to a synthetic analog of ceramide induced apoptosis, thus bypassing Fas resistance and indicating that the signaling pathways downstream of ceramide were intact. Furthermore, activation of protein kinase C with the diacylglycerol analog phorbol 12-myristate 13-acetate significantly reduced Fas-induced cytotoxicity, suggesting opposing roles for ceramide and protein kinase C in regulation of apoptosis. These results provide evidence for ceramide as a necessary and sufficient lipid mediator of Fas-mediated apoptosis and suggest this process may be modulated via activation of additional signal-transduction pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evidence from postmortem studies suggest an involvement of oxidative stress in the degeneration of dopaminergic neurons in Parkinson disease (PD) that have recently been shown to die by apoptosis, but the relationship between oxidative stress and apoptosis has not yet been elucidated. Activation of the transcription factor NF-κB is associated with oxidative stress-induced apoptosis in several nonneuronal in vitro models. To investigate whether it may play a role in PD, we looked for the translocation of NF-κB from the cytoplasm to the nucleus, evidence of its activation, in melanized neurons in the mesencephalon of postmortem human brain from five patients with idiopathic PD and seven matched control subjects. In PD patients, the proportion of dopaminergic neurons with immunoreactive NF-κB in their nuclei was more than 70-fold that in control subjects. A possible relationship between the nuclear localization of NF-κB in mesencephalic neurons of PD patients and oxidative stress in such neurons has been shown in vitro with primary cultures of rat mesencephalon, where translocation of NF-κB is preceded by a transient production of free radicals during apoptosis induced by activation of the sphingomyelin-dependent signaling pathway with C2-ceramide. The data suggest that this oxidant-mediated apoptogenic transduction pathway may play a role in the mechanism of neuronal death in PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The lipid bilayer of the myelin membrane of the central nervous system (CNS) and the peripheral nervous system (PNS) contains the oligodendrocyte- and Schwann cell-specific glycosphingolipids galactocerebrosides (GalC) and GalC-derived sulfatides (sGalC). We have generated a UDP-galactose ceramide galactosyltransferase (CGT) null mutant mouse (cgt−/−) with CNS and PNS myelin completely depleted of GalC and derived sGalC. Oligodendrocytes and Schwann cells are unable to restore the structure and function of these galactosphingolipids to maintain the insulator function of the membrane bilayer. The velocity of nerve conduction of homozygous cgt−/− mice is reduced to that of unmyelinated axons. This indicates a severely altered ion permeability of the lipid bilayer. GalC and sGalC are essential for the unperturbed lipid bilayer of the myelin membrane of CNS and PNS. The severe dysmyelinosis leads to death of the cgt−/− mouse at the end of the myelination period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calcium influx through store-operated calcium release-activated calcium channels (CRAC) is required for T cell activation, cytokine synthesis, and proliferation. The CD95 (Apo-1/Fas) receptor plays a role in self-tolerance and tumor immune escape, and it mediates apoptosis in activated T cells. In this paper we show that CD95-stimulation blocks CRAC and Ca2+ influx in lymphocytes through the activation of acidic sphingomyelinase (ASM) and ceramide release. The block of Ca2+ entry is lacking in CD95-defective lpr lymphocytes as well as in ASM-defective cells and can be restored by retransfection of ASM. C2 ceramide, C6 ceramide, and sphingosine block CRAC reversibly, whereas the inactive dihydroceramide has no effect. CD95-stimulation or the addition of ceramide prevents store-operated Ca2+ influx, activation of the transcriptional regulator NFAT, and IL-2 synthesis. The block of CRAC by sphingomyelinase metabolites adds a function to the repertoire of the CD95 receptor inhibiting T cell activation signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Class I MHC protein primarily presents endogenous antigen but also may present exogenous antigen. Here, we investigated the intracellular pathway of spontaneously internalized class I MHC protein by confocal microscopy. β2-microglobulin (β2m), labeled with a single fluorophore, was exchanged at the surface of B cell transfectants to specifically mark cell surface and endocytosed class I MHC protein. Intracellular β2m colocalized with fluorophore-conjugated transferrin, implying that class I MHC protein endocytosed into early endosomes. These endosomes containing fluorescent β2m were found close to or within the Golgi apparatus, marked by fluorescent ceramide. Even after 24 hr of incubation, very little fluorescent β2m was found in intracellular organelles stained by DiOC6, marking the endoplasmic reticulum, or fluorophore-conjugated low density lipoprotein, marking late endosomes and lysosomes. Fluorophore-conjugated superantigens (staphylococcal enterotoxin A and B), presumed to enter cells bound to class II MHC protein, also were found to endocytose into β2m-containing early endosomes. Staining with mAb and use of transfectants expressing MHC protein attached to green fluorescent protein confirmed the presence of intracellular compartments rich in both class I and II MHC protein and demonstrated that class I and II MHC protein also colocalize in discrete microdomains at the cell surface. These cell surface microdomains also contained transferrin receptor and often were juxtaposed to cholesterol-rich lipid rafts. Thus, class I and II MHC protein meet in microdomains of the plasma membrane and endocytose into early endosomes, where both may acquire and present exogenous antigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kinase suppressor of Ras (KSR) is an evolutionarily conserved component of Ras-dependent signaling pathways. Here, we find that murine KSR (mKSR1) translocates from the cytoplasm to the plasma membrane in the presence of activated Ras. At the membrane, mKSR1 modulates Ras signaling by enhancing Raf-1 activity in a kinase-independent manner. The activation of Raf-1 is mediated by the mKSR1 cysteine-rich CA3 domain and involves a detergent labile cofactor that is not ceramide. These findings reveal another point of regulation for Ras-mediated signal transduction and further define a noncatalytic role for mKSR1 in the multistep process of Raf-1 activation.