22 resultados para cell strain COS1
em National Center for Biotechnology Information - NCBI
Resumo:
We describe a novel DNA damage binding activity in nuclear extracts from a normal human fibroblast cell strain. This protein was identified using electrophoretic mobility shift assays of immunopurified UV-irradiated oligonucleotide substrates containing a single, site-specific cyclobutane pyrimidine dimer or a pyrimidine (6-4) pyrimidinone photoproduct. Compared with the (6-4) photoproduct, which displayed similar levels of binding in double and single-stranded substrates, the protein showed somewhat lower affinity for the cyclobutane dimer in a single-stranded oligonucleotide and negligible binding in double-stranded DNA. The specificity and magnitude of binding was similar in cells with normal excision repair (GM637) and repair-deficient cells from xeroderma pigmentosum groups A (XP12RO) and E (XP2RO). An apparent molecular mass of 66 kDa consisting of two subunits of approximately 22 and approximately 44 kDa was determined by Southwestern analysis. Cell cycle studies using centrifugal cell elutriation indicated that the binding activity was significantly greater in G1 phase compared with S phase in a human lymphoblast cell line. Gel supershift analysis using an anti-replication protein A antibody showed that the binding protein was not antigenically related to the human single-stranded binding protein. Taken together, these data suggest that this activity represents a novel DNA damage binding protein that, in addition to a putative role in excision repair, may also function in cell cycle or gene regulation.
Resumo:
The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-inducing,” primary, macrophage-tropic HIV-1BX08 isolate, was at least as fusogenic as that of the “syncytium-inducing” HIV-1LAI strain. BX08 Env-mediated fusion was inhibited by the β-chemokines RANTES (regulated upon activation, normal T cell expressed and secreted) and macrophage inflammatory proteins 1β (MIP-1β) and by antibodies to CD4, whereas LAI Env-mediated fusion was insensitive to these β-chemokines. In contrast soluble CD4 significantly reduced LAI, but not BX08 Env-mediated fusion, suggesting that the primary isolate Env glycoprotein has a reduced affinity for CD4. The domains in gp120/gp41 involved in the interaction with the CD4 and CCR-5 molecules were probed using monoclonal antibodies. For the antibodies tested here, the greatest inhibition of fusion was observed with those directed to conformation-dependent, rather than linear epitopes. Efficient inhibition of fusion was not restricted to epitopes in any one domain of gp120/gp41. The assay was sufficiently sensitive to distinguish between antibody- and β-chemokine-mediated fusion inhibition using serum samples from patient BX08, suggesting that the system may be useful for screening human sera for the presence of biologically significant antibodies.
Resumo:
Pathogenic Yersinia spp. carry a large common plasmid that encodes a number of essential virulence determinants. Included in these factors are the Yersinia-secreted proteins called Yops. We analyzed the consequences of wild-type and mutant strains of Yersinia pseudotuberculosis interactions with the macrophage cell line RAW264.7 and murine bone marrow-derived macrophages. Wild-type Y. pseudotuberculosis kills ≈70% of infected RAW264.7 macrophages and marrow-derived macrophages after an 8-h infection. We show that the cell death mediated by Y. pseudotuberculosis is apoptosis. Mutant Y. pseudotuberculosis that do not make any Yop proteins no longer cause host cell death. Attachment to host cells via invasin or YadA is necessary for the cell death phenotype. Several Yop mutant strains that fail to express one or more Yop proteins were engineered and then characterized for their ability to cause host cell death. A mutant with a polar insertion in YpkA Ser/Thr kinase that does not express YpkA or YopJ is no longer able to cause apoptosis. In contrast, a mutant no longer making YopE or YopH (a tyrosine phosphatase) induces apoptosis in macrophages similar to wild type. When yopJ is added in trans to the ypkAyopJ mutant, the ability of this strain to signal programmed cell death in macrophages is restored. Thus, YopJ is necessary for inducing apoptosis. The ability of Y. pseudotuberculosis to promote apoptosis of macrophages in cell culture suggests that this process is important for the establishment of infection in the host and for evasion of the host immune response.
Resumo:
Hepatic fibrosis represents the generalized response of the liver to injury and is characterized by excessive deposition of extracellular matrix. The cellular basis of this process is complex and involves interplay of many factors, of which cytokines are prominent. We have identified divergent fibrosing responses to injury among mouse strains and taken advantage of these differences to examine and contrast T helper (Th)-derived cytokines during fibrogenesis. Liver injury was induced with carbon tetrachloride, fibrosis was quantitated, and Th1/Th2 cytokine mRNAs measured. Liver injury in BALB/c mice resulted in severe fibrosis, whereas C57BL/6 mice developed comparatively minimal fibrosis. Fibrogenesis was significantly modified in T and B cell-deficient BALB/c and C57BL/6 severe combined immunodeficient (SCID) mice compared with wild-type counterparts, suggesting a role of Th subsets. Fibrogenic BALB/c mice exhibited a Th2 response during the wounding response, whereas C57BL/6 mice displayed a Th1 response, suggesting that hepatic fibrosis is influenced by different T helper subsets. Moreover, mice lacking interferon γ, which default to the Th2 cytokine pathway, exhibited more pronounced fibrotic lesions than did wild-type animals. Finally, shifting of the Th2 response toward a Th1 response by treatment with neutralizing anti-interleukin 4 or with interferon γ itself ameliorated fibrosis in BALB/c mice. These data support a role for immune modulation of hepatic fibrosis and suggest that Th cytokine subsets can modulate the fibrotic response to injury.
Resumo:
Brain capillary endothelial cells (BCECs) are targets of CD4-independent infection by HIV-1 and simian immunodeficiency virus (SIV) strains in vitro and in vivo. Infection of BCECs may provide a portal of entry for the virus into the central nervous system and could disrupt blood–brain barrier function, contributing to the development of AIDS dementia. We found that rhesus macaque BCECs express chemokine receptors involved in HIV and SIV entry including CCR5, CCR3, CXCR4, and STRL33, but not CCR2b, GPR1, or GPR15. Infection of BCECs by the neurovirulent strain SIV/17E-Fr was completely inhibited by aminooxypentane regulation upon activation, normal T cell expression and secretion in the presence or absence of ligands, but not by eotaxin or antibodies to CD4. We found that the envelope (env) proteins from SIV/17E-Fr and several additional SIV strains mediated cell–cell fusion and virus infection with CD4-negative, CCR5-positive cells. In contrast, fusion with cells expressing the coreceptors STRL33, GPR1, and GPR15 was CD4-dependent. These results show that CCR5 can serve as a primary receptor for SIV in BCECs and suggest a possible CD4-independent mechanism for blood–brain barrier disruption and viral entry into the central nervous system.
Resumo:
Diploid yeast develop pseudohyphae in response to nitrogen starvation, while haploid yeast produce invasive filaments which penetrate the agar in rich medium. We have identified a gene, FLO11, that encodes a cell wall protein which is critically required for both invasion and pseudohyphae formation in response to nitrogen starvation. FLO11 encodes a cell surface flocculin with a structure similar to the class of yeast serine/threonine-rich GPI-anchored cell wall proteins. Cells of the Saccharomyces cerevisiae strain Σ1278b with deletions of FLO11 do not form pseudohyphae as diploids nor invade agar as haploids. In rich media, FLO11 is regulated by mating type; it is expressed in haploid cells but not in diploids. Upon transfer to nitrogen starvation media, however, FLO11 transcripts accumulate in diploid cells, but not in haploids. Overexpression of FLO11 in diploid cells, which are otherwise not invasive, enables them to invade agar. Thus, the mating type repression of FLO11 in diploids grown in rich media suffices to explain the inability of these cells to invade. The promoter of FLO11 contains a consensus binding sequence for Ste12p and Tec1p, proteins known to cooperatively activate transcription of Ty1 elements and the TEC1 gene during development of pseudohyphae. Yeast with a deletion of STE12 does not express FLO11 transcripts, indicating that STE12 is required for FLO11 expression. These ste12-deletion strains also do not invade agar. However, the ability to invade can be restored by overexpressing FLO11. Activation of FLO11 may thus be the primary means by which Ste12p and Tec1p cause invasive growth.
Resumo:
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.
Resumo:
It has been demonstrated that CD8+ T cells produce a soluble factor(s) that suppresses human immunodeficiency virus (HIV) replication in CD4+ T cells. The role of soluble factors in the suppression of HIV replication in monocyte/macrophages (M/M) has not been fully delineated. To investigate whether a CD8+ T-cell-derived soluble factor(s) can also suppress HIV infection in the M/M system, primary macrophages were infected with the macrophage tropic HIV-1 strain Ba-L. CD8+ T-cell-depleted peripheral blood mononuclear cells were also infected with HIV-1 IIIB or Ba-L. HIV expression from the chronically infected macrophage cell line U1 was also determined in the presence of CD8+ T-cell supernatants or β-chemokines. We demonstrate that: (i) CD8+ T-cell supernatants did, but β-chemokines did not, suppress HIV replication in the M/M system; (ii) antibodies to regulated on activation normal T-cell expressed and Secreted (RANTES), macrophage inflammatory protein 1α (MIP-1α) and MIP-1β did not, whereas antibodies to interleukin 10, interleukin 13, interferon α, or interferon γ modestly reduced anti-HIV activity of the CD8+ T-cell supernatants; and (iii) the CD8+ T-cell supernatants did, but β-chemokines did not, suppress HIV-1 IIIB replication in peripheral blood mononuclear cells as well as HIV expression in U1 cells. These results suggest that HIV-suppressor activity of CD8+ T cells is a multifactorial phenomenon, and that RANTES, MIP-1α, and MIP-1β do not account for the entire scope of CD8+ T-cell-derived HIV-suppressor factors.
Resumo:
New antibiotics to combat the emerging pandemic of drug-resistant strains of Mycobacterium tuberculosis are urgently needed. We have investigated the effects on M. tuberculosis of phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODNs) against the mRNA of glutamine synthetase, an enzyme whose export is associated with pathogenicity and with the formation of a poly-l-glutamate/glutamine cell wall structure. Treatment of virulent M. tuberculosis with 10 μM antisense PS-ODNs reduced glutamine synthetase activity and expression by 25–50% depending on whether one, two, or three different PS-ODNs were used and the PS-ODNs' specific target sites on the mRNA. Treatment with PS-ODNs of a recombinant strain of Mycobacterium smegmatis expressing M. tuberculosis glutamine synthetase selectively inhibited the recombinant enzyme but not the endogenous enzyme for which the mRNA transcript was mismatched by 2–4 nt. Treatment of M. tuberculosis with the antisense PS-ODNs also reduced the amount of poly-l-glutamate/glutamine in the cell wall by 24%. Finally, treatment with antisense PS-ODNs reduced M. tuberculosis growth by 0.7 logs (1 PS-ODN) to 1.25 logs (3 PS-ODNs) but had no effect on the growth of M. smegmatis, which does not export glutamine synthetase nor possess the poly-l-glutamate/glutamine (P-l-glx) cell wall structure. The experiments indicate that the antisense PS-ODNs enter the cytoplasm of M. tuberculosis and bind to their cognate targets. Although more potent ODN technology is needed, this study demonstrates the feasibility of using antisense ODNs in the antibiotic armamentarium against M. tuberculosis.
Resumo:
Current global phylogenies are built predominantly on rRNA sequences. However, an experimental system for studying the evolution of rRNA is not readily available, mainly because the rRNA genes are highly repeated in most experimental organisms. We have constructed an Escherichia coli strain in which all seven chromosomal rRNA operons are inactivated by deletions spanning the 16S and 23S coding regions. A single E. coli rRNA operon carried by a multicopy plasmid supplies 16S and 23S rRNA to the cell. By using this strain we have succeeded in creating microorganisms that contain only a foreign rRNA operon derived from either Salmonella typhimurium or Proteus vulgaris, microorganisms that have diverged from E. coli about 120–350 million years ago. We also were able to replace the E. coli rRNA operon with an E. coli/yeast hybrid one in which the GTPase center of E. coli 23S rRNA had been substituted by the corresponding domain from Saccharomyces cerevisiae. These results suggest that, contrary to common belief, coevolution of rRNA with many other components in the translational machinery may not completely preclude the horizontal transfer of rRNA genes.
Resumo:
Inbred 129 strain mice are predisposed to developing male germ cell tumors (GCTs) of the testes. The inherent genetic defects that underlie male GCT susceptibility in the 129 mouse strain are unknown. GCT incidence is increased in 129 strain males that lack functional p53 protein, and we have used this finding to facilitate the generation of panels of GCT-bearing intercross and backcross mice for genetic mapping analysis. A 129 strain locus, designated pgct1, that segregates with the male GCT phenotype has been identified on chromosome 13 near D13Mit188. This region of murine chromosome 13 may be syntenic to a portion of human chromosome 5q that is implicated in male GCT susceptibility in humans.
Resumo:
The PKC1–MPK1 pathway in yeast functions in the maintenance of cell wall integrity and in the stress response. We have identified a family of genes that are putative regulators of this pathway. WSC1, WSC2, and WSC3 encode predicted integral membrane proteins with a conserved cysteine motif and a WSC1–green fluorescence protein fusion protein localizes to the plasma membrane. Deletion of WSC results in phenotypes similar to mutants in the PKC1–MPK1 pathway and an increase in the activity of MPK1 upon a mild heat treatment is impaired in a wscΔ mutant. Genetic analysis places the function of WSC upstream of PKC1, suggesting that they play a role in its activation. We also find a genetic interaction between WSC and the RAS–cAMP pathway. The RAS–cAMP pathway is required for cell cycle progression and for the heat shock response. Overexpression of WSC suppresses the heat shock sensitivity of a strain in which RAS is hyperactivated and the heat shock sensitivity of a wscΔ strain is rescued by deletion of RAS2. The functional characteristics and cellular localization of WSC suggest that they may mediate intracellular responses to environmental stress in yeast.
Resumo:
The cell wall imparts structural strength and shape to bacteria. It is made up of polymeric glycan chains with peptide branches that are cross-linked to form the cell wall. The cross-linking reaction, catalyzed by transpeptidases, is the last step in cell wall biosynthesis. These enzymes are members of the family of penicillin-binding proteins, the targets of β-lactam antibiotics. We report herein the structure of a penicillin-binding protein complexed with a cephalosporin designed to probe the mechanism of the cross-linking reaction catalyzed by transpeptidases. The 1.2-Å resolution x-ray structure of this cephalosporin bound to the active site of the bifunctional serine type d-alanyl-d-alanine carboxypeptidase/transpeptidase (EC 3.4.16.4) from Streptomyces sp. strain R61 reveals how the two peptide strands from the polymeric substrates are sequestered in the active site of a transpeptidase. The structure of this complex provides a snapshot of the enzyme and the bound cell wall components poised for the final and critical cross-linking step of cell wall biosynthesis.
Resumo:
Sodalis glossinidius is a maternally transmitted secondary endosymbiont residing intracellularly in tissues of the tsetse flies, Glossina spp. In this study, we have used Tn5 mutagenesis and a negative selection procedure to derive a S. glossinidius mutant that is incapable of invading insect cells in vitro and is aposymbiotic when microinjected into tsetse. This mutant strain harbors Tn5 integrated into a chromosomal gene sharing high sequence identity with a type III secretion system invasion gene (invC) previously identified in Salmonella enterica. With the use of degenerate PCR, we have amplified a further six Sodalis inv/spa genes sharing high sequence identity with type III secretion system genes encoded by Salmonella pathogenicity island 1. Phylogenetic reconstructions based on the inv/spa genes of Sodalis and other members of the family Enterobacteriaceae have consistently identified a well-supported clade containing Sodalis and the enteric pathogens Shigella and Salmonella. These results suggest that Sodalis may have evolved from an ancestor with a parasitic intracellular lifestyle, possibly a latter-day entomopathogen. These observations lend credence to a hypothesis suggesting that vertically transmitted mutualistic endosymbionts evolve from horizontally transmitted parasites through a parasitism–mutualism continuum.
Resumo:
Eukaryotic cells contain many actin-interacting proteins, including the α-actinins and the fimbrins, both of which have actin cross-linking activity in vitro. We report here the identification and characterization of both an α-actinin-like protein (Ain1p) and a fimbrin (Fim1p) in the fission yeast Schizosaccharomyces pombe. Ain1p localizes to the actomyosin-containing medial ring in an F-actin–dependent manner, and the Ain1p ring contracts during cytokinesis. ain1 deletion cells have no obvious defects under normal growth conditions but display severe cytokinesis defects, associated with defects in medial-ring and septum formation, under certain stress conditions. Overexpression of Ain1p also causes cytokinesis defects, and the ain1 deletion shows synthetic effects with other mutations known to affect medial-ring positioning and/or organization. Fim1p localizes both to the cortical actin patches and to the medial ring in an F-actin–dependent manner, and several lines of evidence suggest that Fim1p is involved in polarization of the actin cytoskeleton. Although a fim1 deletion strain has no detectable defect in cytokinesis, overexpression of Fim1p causes a lethal cytokinesis defect associated with a failure to form the medial ring and concentrate actin patches at the cell middle. Moreover, an ain1 fim1 double mutant has a synthetical-lethal defect in medial-ring assembly and cell division. Thus, Ain1p and Fim1p appear to have an overlapping and essential function in fission yeast cytokinesis. In addition, protein-localization and mutant-phenotype data suggest that Fim1p, but not Ain1p, plays important roles in mating and in spore formation.