3 resultados para cationic exchange column
em National Center for Biotechnology Information - NCBI
Resumo:
A 135-kD actin-bundling protein was purified from pollen tubes of lily (Lilium longiflorum) using its affinity to F-actin. From a crude extract of the pollen tubes, this protein was coprecipitated with exogenously added F-actin and then dissociated from F-actin by treating it with high-ionic-strength solution. The protein was further purified sequentially by chromatography on a hydroxylapatite column, a gel-filtration column, and a diethylaminoethyl-cellulose ion-exchange column. In the present study, this protein is tentatively referred to as P-135-ABP (Plant 135-kD Actin-Bundling Protein). By the elution position from a gel-filtration column, we estimated the native molecular mass of purified P-135-ABP to be 260 kD, indicating that it existed in a dimeric form under physiological conditions. This protein bound to and bundled F-actin prepared from chicken breast muscle in a Ca2+-independent manner. The binding of 135-P-ABP to actin was saturated at an approximate stoichiometry of 26 actin monomers to 1 dimer of P-135-ABP. By transmission electron microscopy of thin sections, we observed cross-bridges between F-actins with a longitudinal periodicity of 31 nm. Immunofluorescence microscopy using rhodamine-phalloidin and antibodies against the 135-kD polypeptide showed that P-135-ABP was colocalized with bundles of actin filaments in lily pollen tubes, leading us to conclude that it is the factor responsible for bundling the filaments.
Resumo:
Different approaches were utilized to investigate the mechanism by which fusicoccin (FC) induces the activation of the H+-ATPase in plasma membrane (PM) isolated from radish (Raphanus sativus L.) seedlings treated in vivo with (FC-PM) or without (C-PM) FC. Treatment of FC-PM with different detergents indicated that PM H+-ATPase and the FC-FC-binding-protein (FCBP) complex were solubilized to a similar extent. Fractionation of solubilized FC-PM proteins by a linear sucrose-density gradient showed that the two proteins comigrated and that PM H+-ATPase retained the activated state induced by FC. Solubilized PM proteins were also fractionated by a fast-protein liquid chromatography anion-exchange column. Comparison between C-PM and FC-PM indicated that in vivo treatment of the seedlings with FC caused different elution profiles; PM H+-ATPase from FC-PM was only partially separated from the FC-FCBP complex and eluted at a higher NaCl concentration than did PM H+-ATPase from C-PM. Western analysis of fast-protein liquid chromatography fractions probed with an anti-N terminus PM H+-ATPase antiserum and with an anti-14–3-3 antiserum indicated an FC-induced association of FCBP with the PM H+-ATPase. Analysis of the activation state of PM H+-ATPase in fractions in which the enzyme was partially separated from FCBP suggested that the establishment of an association between the two proteins was necessary to maintain the FC-induced activation of the enzyme.
Resumo:
Brefeldin A (BFA) inhibited the exchange of ADP ribosylation factor (ARF)-bound GDP for GTP by a Golgi-associated guanine nucleotide-exchange protein (GEP) [Helms, J. B. & Rothman, J. E. (1992) Nature (London) 360, 352–354; Donaldson, J. G., Finazzi, D. & Klausner, R. D. (1992) Nature (London) 360, 350–352]. Cytosolic ARF GEP was also inhibited by BFA, but after purification from bovine brain and rat spleen, it was no longer BFA-sensitive [Tsai, S.-C., Adamik, R., Moss, J. & Vaughan, M. (1996) Proc. Natl. Acad. Sci. USA 93, 305–309]. We describe here purification from bovine brain cytosol of a BFA-inhibited GEP. After chromatography on DEAE–Sephacel, hydroxylapatite, and Mono Q and precipitation at pH 5.8, GEP was eluted from Superose 6 as a large molecular weight complex at the position of thyroglobulin (≈670 kDa). After SDS/PAGE of samples from column fractions, silver-stained protein bands of ≈190 and 200 kDa correlated with activity. BFA-inhibited GEP activity of the 200-kDa protein was demonstrated following electroelution from the gel and renaturation by dialysis. Four tryptic peptides from the 200-kDa protein had amino acid sequences that were 47% identical to sequences in Sec7 from Saccharomyces cerevisiae (total of 51 amino acids), consistent with the view that the BFA-sensitive 200-kDa protein may be a mammalian counterpart of Sec7 that plays a similar role in cellular vesicular transport and Sec7 may be a GEP for one or more yeast ARFs.