16 resultados para catalytic efficiency

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzymatic transformations of macromolecular substrates such as DNA repair enzyme/DNA transformations are commonly interpreted primarily by active-site functional-group chemistry that ignores their extensive interfaces. Yet human uracil–DNA glycosylase (UDG), an archetypical enzyme that initiates DNA base-excision repair, efficiently excises the damaged base uracil resulting from cytosine deamination even when active-site functional groups are deleted by mutagenesis. The 1.8-Å resolution substrate analogue and 2.0-Å resolution cleaved product cocrystal structures of UDG bound to double-stranded DNA suggest enzyme–DNA substrate-binding energy from the macromolecular interface is funneled into catalytic power at the active site. The architecturally stabilized closing of UDG enforces distortions of the uracil and deoxyribose in the flipped-out nucleotide substrate that are relieved by glycosylic bond cleavage in the product complex. This experimentally defined substrate stereochemistry implies the enzyme alters the orientation of three orthogonal electron orbitals to favor electron transpositions for glycosylic bond cleavage. By revealing the coupling of this anomeric effect to a delocalization of the glycosylic bond electrons into the uracil aromatic system, this structurally implicated mechanism resolves apparent paradoxes concerning the transpositions of electrons among orthogonal orbitals and the retention of catalytic efficiency despite mutational removal of active-site functional groups. These UDG/DNA structures and their implied dissociative excision chemistry suggest biology favors a chemistry for base-excision repair initiation that optimizes pathway coordination by product binding to avoid the release of cytotoxic and mutagenic intermediates. Similar excision chemistry may apply to other biological reaction pathways requiring the coordination of complex multistep chemical transformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vast majority of HIV-1 infections in Africa are caused by the A and C viral subtypes rather than the B subtype prevalent in the United States and Western Europe. Genomic differences between subtypes give rise to sequence variations in the encoded proteins, including the HIV-1 protease. Because some amino acid polymorphisms occur at sites that have been associated with drug resistance in the B subtype, it is important to assess the effectiveness of protease inhibitors that have been developed against different subtypes. Here we report the enzymatic characterization of HIV-1 proteases with sequences found in drug-naïve Ugandan adults. The A protease used in these studies differs in seven positions (I13V/E35D/M36I/R41K/R57K/H69K/L89M) in relation to the consensus B subtype protease. Another protease containing a subset of these amino acid polymorphisms (M36I/R41K/H69K/L89M), which are found in subtype C and other HIV subtypes, also was studied. Both proteases were found to have similar catalytic constants, kcat, as the B subtype. The C subtype protease displayed lower Km values against two different substrates resulting in a higher (2.4-fold) catalytic efficiency than the B subtype protease. Indinavir, ritonavir, saquinavir, and nelfinavir inhibit the A and C subtype proteases with 2.5–7-fold and 2–4.5-fold weaker Kis than the B subtype. When all factors are taken into consideration it is found that the C subtype protease has the highest vitality (4–11 higher than the B subtype) whereas the A subtype protease exhibits values ranging between 1.5 and 5. These results point to a higher biochemical fitness of the A and C proteases in the presence of existing inhibitors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Catalytic antibodies have shown great promise for catalyzing a tremendously diverse set of natural and unnatural chemical transformations. However, few catalytic antibodies have efficiencies that approach those of natural enzymes. In principle, random mutagenesis procedures such as phage display could be used to improve the catalytic activities of existing antibodies; however, these studies have been hampered by difficulties in the recombinant expression of antibodies. Here, we have grafted the antigen binding loops from a murine-derived catalytic antibody, 17E8, onto a human antibody framework in an effort to overcome difficulties associated with recombinant expression and phage display of this antibody. “Humanized” 17E8 retained similar catalytic and hapten binding properties as the murine antibody while levels of functional Fab displayed on phage were 200-fold higher than for a murine variable region/human constant region chimeric Fab. This construct was used to prepare combinatorial libraries. Affinity panning of these resulted in the selection of variants with 2- to 8-fold improvements in binding affinity for a phosphonate transition-state analog. Surprisingly, none of the affinity-matured variants was more catalytically active than the parent antibody and some were significantly less active. By contrast, a weaker binding variant was identified with 2-fold greater catalytic activity and incorporation of a single substitution (Tyr-100aH → Asn) from this variant into the parent antibody led to a 5-fold increase in catalytic efficiency. Thus, phage display methods can be readily used to optimize binding of catalytic antibodies to transition-state analogs, and when used in conjunction with limited screening for catalysis can identify variants with higher catalytic efficiencies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present evidence that the size of an active site side chain may modulate the degree of hydrogen tunneling in an enzyme-catalyzed reaction. Primary and secondary kH/kT and kD/kT kinetic isotope effects have been measured for the oxidation of benzyl alcohol catalyzed by horse liver alcohol dehydrogenase at 25°C. As reported in earlier studies, the relationship between secondary kH/kT and kD/kT isotope effects provides a sensitive probe for deviations from classical behavior. In the present work, catalytic efficiency and the extent of hydrogen tunneling have been correlated for the alcohol dehydrogenase-catalyzed hydride transfer among a group of site-directed mutants at position 203. Val-203 interacts with the opposite face of the cofactor NAD+ from the alcohol substrate. The reduction in size of this residue is correlated with diminished tunneling and a two orders of magnitude decrease in catalytic efficiency. Comparison of the x-ray crystal structures of a ternary complex of a high-tunneling (Phe-93 → Trp) and a low-tunneling (Val-203 → Ala) mutant provides a structural basis for the observed effects, demonstrating an increase in the hydrogen transfer distance for the low-tunneling mutant. The Val-203 → Ala ternary complex crystal structure also shows a hyperclosed interdomain geometry relative to the wild-type and the Phe-93 → Trp mutant ternary complex structures. This demonstrates a flexibility in interdomain movement that could potentially narrow the distance between the donor and acceptor carbons in the native enzyme and may enhance the role of tunneling in the hydride transfer reaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 2.15-Å resolution cocrystal structure of EcoRV endonuclease mutant T93A complexed with DNA and Ca2+ ions reveals two divalent metals bound in one of the active sites. One of these metals is ligated through an inner-sphere water molecule to the phosphate group located 3′ to the scissile phosphate. A second inner-sphere water on this metal is positioned approximately in-line for attack on the scissile phosphate. This structure corroborates the observation that the pro-SP phosphoryl oxygen on the adjacent 3′ phosphate cannot be modified without severe loss of catalytic efficiency. The structural equivalence of key groups, conserved in the active sites of EcoRV, EcoRI, PvuII, and BamHI endonucleases, suggests that ligation of a catalytic divalent metal ion to this phosphate may occur in many type II restriction enzymes. Together with previous cocrystal structures, these data allow construction of a detailed model for the pretransition state configuration in EcoRV. This model features three divalent metal ions per active site and invokes assistance in the bond-making step by a conserved lysine, which stabilizes the attacking hydroxide ion nucleophile.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The diffusional encounter between substrate and enzyme, and hence catalytic efficiency, can be enhanced by mutating charged residues on the surface of the enzyme. In this paper we present a simple method for screening such mutations. This is based on our earlier result that electrostatic enhancement of the enzyme-substrate binding rate constant can be accounted for just by the interaction potential within the active site. Assuming that catalytic and structural integrity is maintained, the catalytic efficiency can be optimized by surface charge mutations which lead to stronger interaction potential within the active site. Application of the screening method on superoxide dismutase shows that only charge mutations close to the active site will have practical effect on the catalytic efficiency. This rationalizes a large number of findings obtained in previous simulation and experimental studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ribozyme RNase P absolutely requires divalent metal ions for catalytic function. Multiple Mg2+ ions contribute to the optimal catalytic efficiency of RNase P, and it is likely that the tertiary structure of the ribozyme forms a specific metal-binding pocket for these ions within the active-site. To identify base moieties that contribute to catalytic metal-binding sites, we have used in vitro selection to isolate variants of the Escherichia coli RNase P RNA with altered specificities for divalent metal. RNase P RNA variants with increased activity in Ca2+ were enriched over 18 generations of selection for catalysis in the presence of Ca2+, which is normally disfavored relative to Mg2+. Although a wide spectrum of mutations was found in the generation-18 clones, only a single point mutation was common to all clones: a cytosine-to-uracil transition at position 70 (E. coli numbering) of RNase P. Analysis of the C70U point mutant in a wild-type background confirmed that the identity of the base at position 70 is the sole determinant of Ca2+ selectivity. It is noteworthy that C70 lies within the phylogenetically well conserved J3/4-P4-J2/4 region, previously implicated in Mg2+ binding. Our finding that a single base change is sufficient to alter the metal preference of RNase P is further evidence that the J3/4-P4-J2/4 domain forms a portion of the ribozyme’s active site.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The cDNAs of two new human membrane-associated aspartic proteases, memapsin 1 and memapsin 2, have been cloned and sequenced. The deduced amino acid sequences show that each contains the typical pre, pro, and aspartic protease regions, but each also has a C-terminal extension of over 80 residues, which includes a single transmembrane domain and a C-terminal cytosolic domain. Memapsin 2 mRNA is abundant in human brain. The protease domain of memapsin 2 cDNA was expressed in Escherichia coli and was purified. Recombinant memapsin 2 specifically hydrolyzed peptides derived from the β-secretase site of both the wild-type and Swedish mutant β-amyloid precursor protein (APP) with over 60-fold increase of catalytic efficiency for the latter. Expression of APP and memapsin 2 in HeLa cells showed that memapsin 2 cleaved the β-secretase site of APP intracellularly. These and other results suggest that memapsin 2 fits all of the criteria of β-secretase, which catalyzes the rate-limiting step of the in vivo production of the β-amyloid (Aβ) peptide leading to the progression of Alzheimer's disease. Recombinant memapsin 2 also cleaved a peptide derived from the processing site of presenilin 1, albeit with poor kinetic efficiency. Alignment of cleavage site sequences of peptides indicates that the specificity of memapsin 2 resides mainly at the S1′ subsite, which prefers small side chains such as Ala, Ser, and Asp.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The RNA cleavage reaction catalyzed by the hairpin ribozyme shows biphasic kinetics, and chase experiments show that the slow phase of the reaction results from reversible substrate binding to an inactive conformational isomer. To investigate the structural basis for the heterogeneous kinetics, we have developed an enzymatic RNA modification method that selectively traps substrate bound to the inactive conformer and allows the two forms of the ribozyme-substrate complex to be separated and analyzed by using both physical and kinetic strategies. The inactive form of the complex was trapped by the addition of T4 RNA ligase to a cleavage reaction, resulting in covalent linkage of the 5′ end of the substrate to the 3′ end of the ribozyme and in selective and quantitative ablation of the slow kinetic phase of the reaction. This result indicates that the inactive form of the ribozyme-substrate complex can adopt a conformation in which helices 2 and 3 are coaxially stacked, whereas the active form does not have access to this conformation, because of a sharp bend at the helical junction that presumably is stabilized by inter-domain tertiary contacts required for catalytic activity. These results were used to improve the activity of the hairpin ribozyme by designing new interfaces between the two domains, one containing a non-nucleotidic orthobenzene linkage and the other replacing the two-way junction with a three-way junction. Each of these modified ribozymes preferentially adopts the active conformation and displays improved catalytic efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The protein component of ribonuclease P (RNase P) binds to the RNA subunit, forming a functional ribonucleoprotein complex in vivo and enhancing the affinity of the precursor tRNA (pre-tRNA) substrate. Photocrosslinking experiments with pre-tRNA bound to RNase P reconstituted with the protein component of Bacillus subtilis ribonuclease P (P protein) site specifically modified with a crosslinking reagent indicate that: (i) the central cleft of P protein directly interacts with the single-stranded 5′ leader sequence of pre-tRNA, and (ii) the orientation and register of the pre-tRNA leader sequence in the central cleft places the protein component in close proximity to the active site. This unique mode of interaction suggests that the catalytic active site in RNase P occurs near the interface of RNA and protein. In contrast to other ribonucleoprotein complexes where the protein mainly stabilizes the active tertiary fold of the RNA, a critical function of the protein component of RNase P is to alter substrate specificity and enhance catalytic efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NADP+-isocitrate dehydrogenase (NADP+-IDH; EC 1.1.1.42) is involved in the supply of 2-oxoglutarate for ammonia assimilation and glutamate synthesis in higher plants through the glutamine synthetase/glutamate synthase (GS/GOGAT) cycle. Only one NADP+-IDH form of cytosolic localization was detected in green cotyledons of pine (Pinus spp.) seedlings. The pine enzyme was purified and exhibited molecular and kinetic properties similar to those described for NADP+-IDH from angiosperm, with a higher catalytic efficiency (105 m−1 s−1) than the deduced efficiencies for GS and GOGAT in higher plants. A polyclonal antiserum was raised against pine NADP+-IDH and used to assess protein expression in the seedlings. Steady-state levels of NADP+-IDH were coordinated with GS during seed germination and were associated with GS/GOGAT enzymes during chloroplast biogenesis, suggesting that NADP+-IDH is involved in the provision of carbon skeletons for the synthesis of nitrogen-containing molecules. However, a noncoordinated pattern of NADP+-IDH and GS/GOGAT was observed in advanced stages of cotyledon development and in the hypocotyl. A detailed analysis in hypocotyl sections revealed that NADP+-IDH abundance was inversely correlated with the presence of GS, GOGAT, and ribulose-1,5-bisphosphate carboxylase/oxygenase but was associated with the differentiation of the organ. These results cannot be explained by the accepted role of the enzyme in nitrogen assimilation and strongly suggest that NADP+-IDH may have other, as-yet-unknown, biological functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The four major oligomeric reaction products from saponified modified hairy regions (MHR-S) from apple, produced by recombinant rhamnogalacturonan (RG) α-l-rhamnopyranosyl-(1,4)-α-d-galactopyranosyluronide lyase (rRG-lyase) from Aspergillus aculeatus, were isolated and characterized by 1H-nuclear magnetic resonance spectroscopy. They contain an alternating RG backbone with a degree of polymerization of 4, 6, 8, and 10 and with an α-Δ-(4,5)-unsaturated d-galactopyranosyluronic acid at the nonreducing end and an l-rhamnopyranose at the reducing end. l-Rhamnopyranose units are substituted at C-4 with β-galactose. The maximum reaction rate of rRG-lyase toward MHR-S at pH 6.0 and 31°C was 28 units mg−1. rRG-lyase and RG-hydrolase cleave the same alternating RG I subunit in MHR. Both of these enzymes fragment MHR by a multiple attack mechanism. The catalytic efficiency of rRG-lyase for MHR increases with decreasing degree of acetylation. Removal of arabinose side chains improves the action of rRG-lyase toward MHR-S. In contrast, removal of galactose side chains decreased the catalytic efficiency of rRG-lyase. Native RG-lyase was purified from A. aculeatus, characterized, and found to be similar to the rRG-lyase expressed in Aspergillus oryzae.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new enzyme, rhamnogalacturonan (RG) α-d-galactopyranosyluronohydrolase (RG-galacturonohydrolase), able to release a galacturonic acid residue from the nonreducing end of RG chains but not from homogalacturonan, was purified from an Aspergillus aculeatus enzyme preparation. RG-galacturonohydrolase acted with inversion of anomeric configuration, initially releasing β-d-galactopyranosyluronic acid. The enzyme cleaved smaller RG substrates with the highest catalytic efficiency. A Michaelis constant of 85 μm and a maximum reaction rate of 160 units mg−1 was found toward a linear RG fragment with a degree of polymerization of 6. RG-galacturonohydrolase had a molecular mass of 66 kD, an isoelectric point of 5.12, a pH optimum of 4.0, and a temperature optimum of 50°C. The enzyme was most stable between pH 3.0 and 6.0 (for 24 h at 40°C) and up to 60°C (for 3 h).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A general method has been developed to analyze all 2' hydroxyl groups involved in tertiary interactions in RNA in a single experiment. This method involves comparing the activity of populations of circularly permuted RNAs that contain or lack potential hydrogen-bond donors at each position. The 2' hydroxyls of the pre-tRNA substrate identified as potential hydrogen bond donors in intermolecular interactions with the ribozyme from eubacterial RNase P (P RNA) are located in the T stem and T loop, acceptor stem, and 3' CCA regions. To locate the hydrogen-bond acceptors for one of those 2' hydroxyls in the P RNA, a phylogenetically conserved adenosine was mutated to a guanosine. When this mutant P RNA was used, increased cleavage activity of a single circularly permuted substrate within the population was observed. The cleavage efficiency (kcat/Km) of a singly 2'-deoxy-substituted substrate at this position in the T stem was also determined. For the wild-type P RNA, the catalytic efficiency was significantly decreased compared with that of the all-ribo substrate, consistent with the notion that this 2' hydroxyl plays an important role. For the P RNA mutant, no additional effect was found upon 2'-deoxy substitution. We propose that this particular 2' hydroxyl in the pre-tRNA interacts specifically with this adenosine in the P RNA. This method should be useful in examining the role of 2' hydroxyl groups in other RNA-RNA and RNA-protein complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glutathione S-transferases (EC 2.5.1.18) in mammalian cells catalyze the conjugation, and thus, the detoxication of a structurally diverse group of electrophilic environmental carcinogens and alkylating drugs, including the antineoplastic nitrogen mustards. We proposed that structural alteration of the nonspecific electrophile-binding site would produce mutant enzymes with increased efficiency for detoxication of a single drug and that these mutants could serve as useful somatic transgenes to protect healthy human cells against single alkylating agents used in cancer chemotherapy protocols. Random mutagenesis of three regions (residues 9-14, 102-112, and 210-220), which together compose the glutathione S-transferase electrophile-binding site, followed by selection of Escherichia coli expressing the enzyme library with the nitrogen mustard mechlorethamine (20-500 microM), yielded mutant enzymes that showed significant improvement in catalytic efficiency for mechlorethamine conjugation (up to 15-fold increase in kcat and up to 6-fold increase in kcat/Km) and that confer up to 31-fold resistance, which is 9-fold greater drug resistance than that conferred by the wild-type enzyme. The results suggest a general strategy for modification of drug- and carcinogen-metabolizing enzymes to achieve desired resistance in both prokaryotic and eukaryotic plant and animal cells.