146 resultados para caspase recruitment domain protein 15
em National Center for Biotechnology Information - NCBI
Resumo:
The Epstein–Barr virus latent membrane protein 1 (LMP1) is essential for the transformation of B lymphocytes into lymphoblastoid cell lines. Previous data are consistent with a model that LMP1 is a constitutively activated receptor that transduces signals for transformation through its carboxyl-terminal cytoplasmic tail. One transformation effector site (TES1), located within the membrane proximal 45 residues of the cytoplasmic tail, constitutively engages tumor necrosis factor receptor-associated factors. Signals from TES1 are sufficient to drive initial proliferation of infected resting B lymphocytes, but most lymphoblastoid cells infected with a virus that does not express the 155 residues beyond TES1 fail to grow as long-term cell lines. We now find that mutating two tyrosines to an isoleucine at the carboxyl end of the cytoplasmic tail cripples the ability of EBV to cause lymphoblastoid cell outgrowth, thereby marking a second transformation effector site, TES2. A yeast two-hybrid screen identified TES2 interacting proteins, including the tumor necrosis factor receptor-associated death domain protein (TRADD). TRADD was the only protein that interacted with wild-type TES2 and not with isoleucine-mutated TES2. TRADD associated with wild-type LMP1 but not with isoleucine-mutated LMP1 in mammalian cells, and TRADD constitutively associated with LMP1 in EBV-transformed cells. In transfection assays, TRADD and TES2 synergistically mediated high-level NF-κB activation. These results indicate that LMP1 appropriates TRADD to enable efficient long-term lymphoblastoid cell outgrowth. High-level NF-κB activation also appears to be a critical component of long-term outgrowth.
Resumo:
The specificity of protein–protein interactions in cellular signaling cascades is dependent on the sequence and intramolecular location of distinct amino acid motifs. We used the two-hybrid interaction trap to identify proteins that can associate with the PDZ motif-rich segment in the protein tyrosine phosphatase PTP-BL. A specific interaction was found with the Lin-11, Isl-1, Mec-3 (LIM) domain containing protein RIL. More detailed analysis demonstrated that the binding specificity resides in the second and fourth PDZ motif of PTP-BL and the LIM domain in RIL. Immunohistochemistry on various mouse tissues revealed a submembranous colocalization of PTP-BL and RIL in epithelial cells. Remarkably, there is also an N-terminal PDZ motif in RIL itself that can bind to the RIL-LIM domain. We demonstrate here that the RIL-LIM domain can be phosphorylated on tyrosine in vitro and in vivo and can be dephosphorylated in vitro by the PTPase domain of PTP-BL. Our data point to the presence of a double PDZ-binding interface on the RIL-LIM domain and suggest tyrosine phosphorylation as a regulatory mechanism for LIM-PDZ associations in the assembly of multiprotein complexes. These findings are in line with an important role of PDZ-mediated interactions in the shaping and organization of submembranous microenvironments of polarized cells.
Resumo:
Rb protein inhibits both cell cycle progression and apoptosis. Interaction of specific cellular proteins, including E2F1, with Rb C-terminal domains mediates cell cycle regulation. In contrast, the nuclear N5 protein associates with an Rb N-terminal domain with unknown function. The N5 protein contains a region of sequence similarity to the death domain of proteins involved in apoptotic signaling. We demonstrate here that forced N5 expression potently induces apoptosis in several tumor cell lines. Mutation of conserved residues within the death domain homology compromise N5-induced apoptosis, suggesting that it is required for normal function. Endogenous N5 protein is specifically altered in apoptotic cells treated with ionizing radiation. Furthermore, dominant interfering death domain mutants compromise cellular responses to ionizing radiation. Finally, physical association with Rb protein inhibits N5-induced apoptosis. We propose that N5 protein plays a role in the regulation of apoptosis and that Rb directly coordinates cell proliferation and apoptosis by binding specific proteins involved in each process through distinct protein binding domains.
Resumo:
The Drosophila trithorax group gene brahma (brm) encodes the ATPase subunit of a SWI/SNF-like chromatin-remodeling complex. A key question about chromatin-remodeling complexes is how they interact with DNA, particularly in the large genomes of higher eukaryotes. Here, we report the characterization of BAP111, a BRM-associated protein that contains a high mobility group (HMG) domain predicted to bind distorted or bent DNA. The presence of an HMG domain in BAP111 suggests that it may modulate interactions between the BRM complex and chromatin. BAP111 is an abundant nuclear protein that is present in all cells throughout development. By using gel filtration chromatography and immunoprecipitation assays, we found that the majority of BAP111 protein in embryos is associated with the BRM complex. Furthermore, heterozygosity for BAP111 enhanced the phenotypes resulting from a partial loss of brm function. These data demonstrate that the BAP111 subunit is important for BRM complex function in vivo.
Resumo:
We have identified and characterized CLARP, a caspase-like apoptosis-regulatory protein. Sequence analysis revealed that human CLARP contains two amino-terminal death effector domains fused to a carboxyl-terminal caspase-like domain. The structure and amino acid sequence of CLARP resemble those of caspase-8, caspase-10, and DCP2, a Drosophila melanogaster protein identified in this study. Unlike caspase-8, caspase-10, and DCP2, however, two important residues predicted to be involved in catalysis were lost in the caspase-like domain of CLARP. Analysis with fluorogenic substrates for caspase activity confirmed that CLARP is catalytically inactive. CLARP was found to interact with caspase-8 but not with FADD/MORT-1, an upstream death effector domain-containing protein of the Fas and tumor necrosis factor receptor 1 signaling pathway. Expression of CLARP induced apoptosis, which was blocked by the viral caspase inhibitor p35, dominant negative mutant caspase-8, and the synthetic caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(OMe)-fluoromethylketone (zVAD-fmk). Moreover, CLARP augmented the killing ability of caspase-8 and FADD/MORT-1 in mammalian cells. The human clarp gene maps to 2q33. Thus, CLARP represents a regulator of the upstream caspase-8, which may play a role in apoptosis during tissue development and homeostasis.
Resumo:
The nuclear LIM domain protein LMO2, a T cell oncoprotein, is essential for embryonic erythropoiesis. LIM-only proteins are presumed to act primarily through protein-protein interactions. We, and others, have identified a widely expressed protein, Ldb1, whose C-terminal 76-residues are sufficient to mediate interaction with LMO2. In murine erythroleukemia cells, the endogenous Lbd1 and LMO2 proteins exist in a stable complex, whose binding affinity appears greater than that between LMO2 and the bHLH transcription factor SCL. However, Ldb1, LMO2, and SCL/E12 can assemble as a multiprotein complex on a consensus SCL binding site. Like LMO2, the Ldb1 gene is expressed in fetal liver and erythroid cell lines. Forced expression of Ldb1 in G1ER proerythroblast cells inhibited cellular maturation, a finding compatible with the decrease in Ldb1 gene expression that normally occurs during erythroid differentiation. Overexpression of the LMO2 gene also inhibited erythroid differentiation. Our studies demonstrate a function for Ldb1 in hemopoietic cells and suggest that one role of the Ldb1/LMO2 complex is to maintain erythroid precursors in an immature state.
Resumo:
SH-PTP1 (also known as PTP1C, HCP, and SHP) is a non-transmembrane protein tyrosine phosphatase (PTPase) containing two tandem Src homology 2 (SH2) domains. We show here that the two SH2 (N-SH2 and C-SH2) domains in SH-PTP1 have different functions in regulation of the PTPase domain and thereby signal transduction. While the N-terminal SH2 domain is both necessary and sufficient for autoinhibition through an intramolecular association with the PTPase domain, truncation of the C-SH2 domain [SH-PTP1 (delta CSH2) construct] has little effect on SH-PTP1 activity. A synthetic phosphotyrosine residue (pY) peptide derived from the erythropoietin receptor (EpoR pY429) binds to the N-SH2 domain and activates both wild-type SH-PTP1 and SH-PTP1 (delta CSH2) 60- to 80-fold. Another pY peptide corresponding to a phosphorylation site on the IgG Fc receptor (Fc gamma RIIB1 pY309) associates with both the C-SH2 domain (Kd = 2.8 microM and the N-SH2 domain (Kd = 15.0 microM) and also activates SH-PTP1 12-fold. By analysis of the effect of the Fc gamma RIIB1 pY309 peptide on SH-PTP1 (delta CSH2), SH-PTP1 (R30K/R33E), SH-PTP1 (R30K/R136K), and SH-PTP1 (R136K) mutants in which the function of either the N- or C-SH2 domain has been impaired, we have determined that both synthetic pY peptides stimulate SH-PTP1 by binding to its N-SH2 domain; binding of pY ligand to the C-SH2 domain has no effect on SH-PTP1 activity. We propose that the N-terminal SH2 domain serves both as a regulatory domain and as a recruiting unit, whereas the C-terminal SH2 domain acts merely as a recruiting unit.
Resumo:
We report single-molecule folding studies of a small, single-domain protein, chymotrypsin inhibitor 2 (CI2). CI2 is an excellent model system for protein folding studies and has been extensively studied, both experimentally (at the ensemble level) and theoretically. Conformationally assisted ligation methodology was used to synthesize the proteins and site-specifically label them with donor and acceptor dyes. Folded and denatured subpopulations were observed by fluorescence resonance energy transfer (FRET) measurements on freely diffusing single protein molecules. Properties of these subpopulations were directly monitored as a function of guanidinium chloride concentration. It is shown that new information about different aspects of the protein folding reaction can be extracted from such subpopulation properties. Shifts in the mean transfer efficiencies are discussed, FRET efficiency distributions are translated into potentials, and denaturation curves are directly plotted from the areas of the FRET peaks. Changes in stability caused by mutation also are measured by comparing pseudo wild-type CI2 with a destabilized mutant (K17G). Current limitations and future possibilities and prospects for single-pair FRET protein folding investigations are discussed.
Resumo:
Phosphorylation of the regulatory (R) domain initiates cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel activity. To discover how the function of this domain is determined by its structure, we produced an R domain protein (R8) that spanned residues 708–831 of CFTR. Phosphorylated, but not unphosphorylated, R8 stimulated activity of CFTR channels lacking this domain, indicating that R8 is functional. Unexpectedly, this functional R8 was predominantly random coil, as revealed by CD and limited proteolysis. The CD spectra of both phosphorylated and nonphosphorylated R8 were similar in aqueous buffer. The folding agent trimethylamine N-oxide induced only a small increase in the helical content of nonphosphorylated R8 and even less change in the helical content of phosphorylated R8. These data, indicating that the R domain is predominantly random coil, may explain the seemingly complex way in which phosphorylation regulates CFTR channel activity.
Resumo:
NGF initiates the majority of its neurotrophic effects by promoting the activation of the tyrosine kinase receptor TrkA. Here we describe a novel interaction between TrkA and GIPC, a PDZ domain protein. GIPC binds to the juxtamembrane region of TrkA through its PDZ domain. The PDZ domain of GIPC also interacts with GAIP, an RGS (regulators of G protein signaling) protein. GIPC and GAIP are components of a G protein-coupled signaling complex thought to be involved in vesicular trafficking. In transfected HEK 293T cells GIPC, GAIP, and TrkA form a coprecipitable protein complex. Both TrkA and GAIP bind to the PDZ domain of GIPC, but their binding sites within the PDZ domain are different. The association of endogenous GIPC with the TrkA receptor was confirmed by coimmunoprecipitation in PC12 (615) cells stably expressing TrkA. By immunofluorescence GIPC colocalizes with phosphorylated TrkA receptors in retrograde transport vesicles located in the neurites and cell bodies of differentiated PC12 (615) cells. These results suggest that GIPC, like other PDZ domain proteins, serves to cluster transmembrane receptors with signaling molecules. When GIPC is overexpressed in PC12 (615) cells, NGF-induced phosphorylation of mitogen-activated protein (MAP) kinase (Erk1/2) decreases; however, there is no effect on phosphorylation of Akt, phospholipase C-γ1, or Shc. The association of TrkA receptors with GIPC and GAIP plus the inhibition of MAP kinase by GIPC suggests that GIPC may provide a link between TrkA and G protein signaling pathways.
Resumo:
Peptide substrates of well-defined protein kinases were microinjected into aleurone protoplasts of barley (Hordeum vulgare L. cv Himalaya) to inhibit, and therefore identify, protein kinase-regulated events in the transduction of the gibberellin (GA) and abscisic acid signals. Syntide-2, a substrate designed for Ca2+- and calmodulin (CaM)-dependent kinases, selectively inhibited the GA response, leaving constitutive and abscisic acid-regulated events unaffected. Microinjection of syntide did not affect the GA-induced increase in cytosolic [Ca2+], suggesting that it inhibited GA action downstream of the Ca2+ signal. When photoaffinity-labeled syntide-2 was electroporated into protoplasts and cross-linked to interacting proteins in situ, it selectively labeled proteins of approximately 30 and 55 kD. A 54-kD, soluble syntide-2 phosphorylating protein kinase was detected in aleurone cells. This kinase was activated by Ca2+ and was CaM independent, but was inhibited by the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (250 μm), suggesting that it was a CaM-domain protein kinase-like activity. These results suggest that syntide-2 inhibits the GA response of the aleurone via an interaction with this kinase, implicating the 54-kD kinase as a Ca2+-dependent regulator of the GA response in these cells.
Resumo:
The RBTN2 LIM-domain protein, originally identified as an oncogenic protein in human T-cell leukemia, is essential for erythropoiesis. A possible role for RBTN2 in transcription during erythropoiesis has been investigated. Direct interaction of the RBTN2 protein was observed in vivo and in vitro with the GATA1 or -2 zinc-finger transcription factors, as well as with the basic helix-loop-helix protein TAL1. By using mammalian two-hybrid analysis, complexes involving RBTN2, TAL1, and GATA1, together with E47, the basic helix-loop-helix heterodimerization partner of TAL1, could be demonstrated. Thus, a molecular link exists between three proteins crucial for erythropoiesis, and the data suggest that variations in amounts of complexes involving RBTN2, TAL1, and GATA1 could be important for erythroid differentiation.
Resumo:
General transcription factor SIII, a heterotrimer composed of 110-kDa (p110), 18-kDa (p18), and 15-kDa (p15) subunits, increases the catalytic rate of transcribing RNA polymerase II by suppressing transient pausing by polymerase at multiple sites on DNA templates. Here we report molecular cloning and biochemical characterization of the SIII p18 subunit, which is found to be a member of the ubiquitin homology (UbH) gene family and functions as a positive regulatory subunit of SIII. p18 is a 118-amino acid protein composed of an 84-residue N-terminal UbH domain fused to a 34-residue C-terminal tail. Mechanistic studies indicate that p18 activates SIII transcriptional activity above a basal level inherent in the SIII p110 and p15 subunits. Taken together, these findings establish a role for p18 in regulating the activity of the RNA polymerase II elongation complex, and they bring to light a function for a UbH domain protein in transcriptional regulation.
Resumo:
Protease-activated receptors 1–3 (PAR1, PAR2, and PAR3) are members of a unique G protein-coupled receptor family. They are characterized by a tethered peptide ligand at the extracellular amino terminus that is generated by minor proteolysis. A partial cDNA sequence of a fourth member of this family (PAR4) was identified in an expressed sequence tag database, and the full-length cDNA clone has been isolated from a lymphoma Daudi cell cDNA library. The ORF codes for a seven transmembrane domain protein of 385 amino acids with 33% amino acid sequence identity with PAR1, PAR2, and PAR3. A putative protease cleavage site (Arg-47/Gly-48) was identified within the extracellular amino terminus. COS cells transiently transfected with PAR4 resulted in the formation of intracellular inositol triphosphate when treated with either thrombin or trypsin. A PAR4 mutant in which the Arg-47 was replaced with Ala did not respond to thrombin or trypsin. A hexapeptide (GYPGQV) representing the newly exposed tethered ligand from the amino terminus of PAR4 after proteolysis by thrombin activated COS cells transfected with either wild-type or the mutant PAR4. Northern blot showed that PAR4 mRNA was expressed in a number of human tissues, with high levels being present in lung, pancreas, thyroid, testis, and small intestine. By fluorescence in situ hybridization, the human PAR4 gene was mapped to chromosome 19p12.
Resumo:
The piebald locus on mouse chromosome 14 encodes the endothelin-B receptor (EDNRB), a G protein-coupled, seven-transmembrane domain protein, which is required for neural crest-derived melanocyte and enteric neuron development. A spontaneous null allele of Ednrb results in homozygous mice that are predominantly white and die as juveniles from megacolon. To identify the important domains for EDNRB function, four recessive juvenile lethal alleles created by either radiation or chemical mutagens (Ednrb27Pub, Ednrb17FrS, Ednrb1Chlc, and Ednrb3Chlo) were examined at the molecular level. Ednrb27Pub mice harbor a mutation at a critical proline residue in the fifth transmembrane domain of the EDNRB protein. A gross genomic alteration within the Ednrb gene in Ednrb3Chlo results in the production of aberrantly sized transcripts and no authentic Ednrb mRNA. Ednrb17FrS mice exhibited a decreased level of Ednrb mRNA, supporting previous observations that the degree of spotting in piebald mice is dependent on the amount of EDNRB expressed. Finally, no molecular defect was detected in Ednrb1Chlc mice, which produce normal levels of Ednrb mRNA in adult brain, suggesting that the mutation affects important regulatory elements that mediate the expression of the gene during development.