19 resultados para cartilage articulaire

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, one of the major actions of insulin-like growth factor I (IGF-I) is to increase skeletal growth by stimulating new cartilage formation. IGF-I stimulates chondrocytes in vitro to synthesize new cartilage matrix, measured by enhanced uptake of 35S-sulfate, but the addition of insulin does not produce a similar effect except when added at high concentrations. However, recent studies have shown that, in teleosts, both insulin and IGF-I are potent activators of 35S-sulfate uptake in gill cartilage. To further characterize the growth-promoting activities of these hormones in fish, we have used reverse transcriptase-linked PCR to analyze the expression of insulin receptor family genes in salmon gill cartilage. Partial cDNA sequences encoding the tyrosine kinase domains from six distinct members of the IR gene family were obtained, and sequence comparisons revealed that four of the cDNAs encoded amino acid sequences that were highly homologous to human IR whereas the encoded sequences from two of the cDNAs were more similar to the human type I IGF receptor (IGF-R). Furthermore, a comparative reverse transcriptase-linked PCR assay revealed that the four putative IR mRNAs expressed in toto in gill cartilage were 56% of that found in liver whereas the expressed amount of the two IGF-R mRNAs was 9-fold higher compared with liver. These results suggest that the chondrogenic actions of insulin and IGF-I in fish are mediated by the ligands binding to their cognate receptors. However, further studies will be required to characterize the binding properties and relative contribution of the individual IR and IGF-R genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cartilage matrix protein (CMP) is the prototype of the newly discovered matrilin family, all of which contain von Willebrand factor A domains. Although the function of matrilins remain unclear, we have shown that, in primary chondrocyte cultures, CMP (matrilin-1) forms a filamentous network, which is made up of two types of filaments, a collagen-dependent one and a collagen-independent one. In this study, we demonstrate that the collagen-independent CMP filaments are enriched in pericellular compartments, extending directly from chondrocyte membranes. Their morphology can be distinguished from that of collagen filaments by immunogold electron microscopy, and mimicked by that of self-assembled purified CMP. The assembly of CMP filaments can occur from transfection of a wild-type CMP transgene alone in skin fibroblasts, which do not produce endogenous CMP. Conversely, assembly of endogenous CMP filaments by chondrocytes can be inhibited specifically by dominant negative CMP transgenes. The two A domains within CMP serve essential but different functions during network formation. Deletion of the A2 domain converts the trimeric CMP into a mixture of monomers, dimers, and trimers, whereas deletion of the A1 domain does not affect the trimeric configuration. This suggests that the A2 domain modulates multimerization of CMP. Absence of either A domain from CMP abolishes its ability to form collagen-independent filaments. In particular, Asp22 in A1 and Asp255 in A2 are essential; double point mutation of these residues disrupts CMP network formation. These residues are part of the metal ion–dependent adhesion sites, thus a metal ion–dependent adhesion site–mediated adhesion mechanism may be applicable to matrilin assembly. Taken together, our data suggest that CMP is a bridging molecule that connects matrix components in cartilage to form an integrated matrix network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considerable evidence indicates that CD4+ T cells are important in the pathogenesis of rheumatoid arthritis (RA), but the antigens recognized by these T cells in the joints of patients remain unclear. Previous studies have suggested that type II collagen (CII) and human cartilage gp39 (HCgp39) are among the most likely synovial antigens to be involved in T cell stimulation in RA. Furthermore, experiments have defined dominant peptide determinants of these antigens when presented by HLA-DR4, the most important RA-associated HLA type. We used fluorescent, soluble peptide–DR4 complexes (tetramers) to detect synovial CD4+ T cells reactive with CII and HCgp39 in DR4+ patients. The CII-DR4 complex bound in a specific manner to CII peptide-reactive T cell hybridomas, but did not stain a detectable fraction of synovial CD4+ cells. A background percentage of positive cells (<0.2%) was not greater in DR4 (DRB1*0401) patients compared with those without this disease-associated allele. Similar results were obtained with the gp39-DR4 complex for nearly all RA patients. In a small subset of DR4+ patients, however, the percentage of synovial CD4+ cells binding this complex was above background and could not be attributed to nonspecific binding. These studies demonstrate the potential for peptide–MHC class II tetramers to be used to track antigen-specific T cells in human autoimmune diseases. Together, the results also suggest that the major oligoclonal CD4+ T cell expansions present in RA joints are not specific for the dominant CII and HCgp39 determinants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tissue engineering of cartilage, i.e., the in vitro cultivation of cartilage cells on synthetic polymer scaffolds, was studied on the Mir Space Station and on Earth. Specifically, three-dimensional cell-polymer constructs consisting of bovine articular chondrocytes and polyglycolic acid scaffolds were grown in rotating bioreactors, first for 3 months on Earth and then for an additional 4 months on either Mir (10−4–10−6 g) or Earth (1 g). This mission provided a unique opportunity to study the feasibility of long-term cell culture flight experiments and to assess the effects of spaceflight on the growth and function of a model musculoskeletal tissue. Both environments yielded cartilaginous constructs, each weighing between 0.3 and 0.4 g and consisting of viable, differentiated cells that synthesized proteoglycan and type II collagen. Compared with the Earth group, Mir-grown constructs were more spherical, smaller, and mechanically inferior. The same bioreactor system can be used for a variety of controlled microgravity studies of cartilage and other tissues. These results may have implications for human spaceflight, e.g., a Mars mission, and clinical medicine, e.g., improved understanding of the effects of pseudo-weightlessness in prolonged immobilization, hydrotherapy, and intrauterine development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In humans, SOX9 heterozygous mutations cause the severe skeletal dysmorphology syndrome campomelic dysplasia. Except for clinical descriptions, little is known about the pathogenesis of this disease. We have generated heterozygous Sox9 mutant mice that phenocopy most of the skeletal abnormalities of this syndrome. The Sox9+/− mice died perinatally with cleft palate, as well as hypoplasia and bending of many skeletal structures derived from cartilage precursors. In embryonic day (E)14.5 heterozygous embryos, bending of radius, ulna, and tibia cartilages was already prominent. In E12.5 heterozygotes, all skeletal elements visualized by using Alcian blue were smaller. In addition, the overall levels of Col2a1 RNA at E10.5 and E12.5 were lower than in wild-type embryos. We propose that the skeletal abnormalities observed at later embryonic stages were caused by delayed or defective precartilaginous condensations. Furthermore, in E18.5 embryos and in newborn heterozygotes, premature mineralization occurred in many bones, including vertebrae and some craniofacial bones. Because Sox9 is not expressed in the mineralized portion of the growth plate, this premature mineralization is very likely the consequence of allele insufficiency existing in cells of the growth plate that express Sox9. Because the hypertrophic zone of the heterozygous Sox9 mutants was larger than that of wild-type mice, we propose that Sox9 also has a role in regulating the transition to hypertrophic chondrocytes in the growth plate. Despite the severe hypoplasia of cartilages, the overall organization and cellular composition of the growth plate were otherwise normal. Our results suggest the hypothesis that two critical steps of the chondrocyte differentiation pathway are sensitive to Sox9 dosage. First, an early step presumably at the stage of mesenchymal condensation of cartilage primordia, and second, a later step preceding the transition of chondrocytes into hypertrophic chondrocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunization of mice with rat type II collagen (CII), a cartilage-specific protein, leads to development of collagen-induced arthritis (CIA), a model for rheumatoid arthritis. To define the interaction between the immune system and cartilage, we produced two sets of transgenic mice. In the first we point mutated the mouse CII gene to express an earlier defined T-cell epitope, CII-(256-270), present in rat CII. In the second we mutated the mouse type I collagen gene to express the same T-cell epitope. The mice with mutated type I collagen showed no T-cell reactivity to rat CII and were resistant to CIA. Thus, the CII-(256-270) epitope is immunodominant and critical for development of CIA. In contrast, the mice with mutated CII had an intact B-cell response and had T cells which could produce gamma interferon, but not proliferate, in response to CII. They developed CIA, albeit with a reduced incidence. Thus, we conclude that T cells recognize CII derived from endogenous cartilage and are partially tolerized but may still be capable of mediating CIA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells from transgenic mice expressing a human mini-gene for collagen I were used as markers to follow the fate of mesenchymal precursor cells from marrow that were partially enriched by adherence to plastic, expanded in culture, and then injected into irradiated mice. Sensitive PCR assays for the marker collagen I gene indicated that few of the donor cells were present in the recipient mice after 1 week, but 1-5 months later, the donor cells accounted for 1.5-12% of the cells in bone, cartilage, and lung in addition to marrow and spleen. A PCR in situ assay on lung indicated that the donor cells diffusely populated the parenchyma, and reverse transcription-PCR assays indicated that the marker collagen I gene was expressed in a tissue-specific manner. The results, therefore, demonstrated that mesenchymal precursor cells from marrow that are expanded in culture can serve as long-lasting precursors for mesenchymal cells in bone, cartilage, and lung. They suggest that cells may be particularly attractive targets for gene therapy ex vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenoviral vectors were used to deliver genes encoding a soluble interleukin 1 (IL-1)-type I receptor-IgG fusion protein and/or a soluble type I tumor necrosis factor α (TNFα) receptor-IgG fusion protein directly to the knees of rabbits with antigen-induced arthritis. When tested individually, knees receiving the soluble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infiltration into the joint space. Delivery of the soluble TNFα receptor was less effective, having only a moderate effect on white blood cell infiltration and no effect on cartilage breakdown. When both soluble receptors were used together, there was a greater inhibition of white blood cell infiltration and cartilage breakdown with a considerable reduction of synovitis. Interestingly, anti-arthritic effects were also seen in contralateral control knees receiving only a marker gene, suggesting that sustained local inhibition of disease activity in one joint may confer an anti-arthritic effect on other joints. These results suggest that local intra-articular gene transfer could be used to treat systemic polyarticular arthritides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skeletal formation is a fundamental element of body patterning and is strictly regulated both temporally and spatially by a variety of molecules. Among these, retinoic acid (RA) has been shown to be involved in normal skeletal development. However, its pleiotropic effects have caused difficulty in identifying its crucial target cells and molecular mechanisms for each effect. Development of cartilage primordia is an important process in defining the skeletal structures. To address the role of RA in skeletal formation, we have generated mice expressing a dominant-negative retinoic acid receptor (RAR) in chondrogenic cells by using the type II collagen α1 promoter, and we have analyzed their phenotypes. These mice exhibited small cartilage primordia during development and retarded skeletal formation in both embryonic and postnatal periods. They also showed selective degeneration in their cervical vertebrae combined with homeotic transformations, but not in their extremities. The cervical phenotypes are reminiscent of phenotypes involving homeobox genes. We found that the expression of Hoxa-4 was indeed reduced in the cartilage primordia of cervical vertebrae of embryonic day 12.5 embryos. These observations demonstrate that endogenous RA acts directly on chondrogenic cells to promote skeletal growth in both embryonic and growing periods, and it regulates the proper formation of cervical vertebrae. Furthermore, RA apparently specifies the identities of the cervical vertebrae through the regulation of homeobox genes in the chondrogenic cells. Great similarities of the phenotypes between our mice and reported RAR knockout mice revealed that chondrogenic cells are a principal RA target during complex cascades of skeletal development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leptin is a 167-aa protein that is secreted from adipose tissue and is important in the regulation of energy balance. It also functions in hematopoiesis and reproduction. To assess whether leptin is involved in fetal growth and development we have examined the distribution of mRNAs encoding leptin and the leptin receptor (which has at least six splice variants) in the 14.5-day postcoitus mouse fetus and in the placenta using reverse transcription–PCR and in situ hybridization. High levels of gene expression for leptin, the leptin receptor, and the long splice variant of the leptin receptor with an intracellular signaling domain were observed in the placenta, fetal cartilage/bone, and hair follicles. Receptor expression also was detected in the lung, as well as the leptomeninges and choroid plexus of the fetal brain. Western blotting and immunocytochemistry, using specific antibodies, demonstrated the presence of leptin and leptin receptor protein in these tissues. These results suggest that leptin may play a role in the growth and development of the fetus, both through placental and fetal expression of the leptin and leptin receptor genes. In the fetus, leptin may be multifunctional and have both paracrine and endocrine effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that the receptor binding moiety of Escherichia coli heat-labile enterotoxin (EtxB) can completely prevent autoimmune disease in a murine model of arthritis. Injection of male DBA/1 mice at the base of the tail with type II collagen in the presence of complete Freund’s adjuvant normally leads to arthritis, as evidenced by inflammatory infiltration and swelling of the joints. A separate injection of EtxB at the same time as collagen challenge prevented leukocyte infiltration, synovial hyperplasia, and degeneration of the articular cartilage and reduced clinical symptoms of disease by 82%. The principle biological property of EtxB is its ability to bind to the ubiquitous cell surface receptor GM1 ganglioside, and to other galactose-containing glycolipids and galactoproteins. The importance of receptor interaction in mediating protection from arthritis was demonstrated by the failure of a non-receptor-binding mutant of EtxB to elicit any protective effect. Analysis of T cell responses to collagen, in cultures of draining lymph node cells, revealed that protection was associated with a marked increase in interleukin 4 production concomitant with a reduction in interferon γ levels. Furthermore, in protected mice there was a significant reduction in anti-collagen antibody levels as well as an increase in the IgG1/IgG2a ratio. These observations show that protection is associated with a shift in the Th1/Th2 balance as well as a general reduction in the extent of the anti-type II collagen immune response. This suggests that EtxB-receptor-mediated modulation of lymphocyte responses provides a means of preventing autoimmune disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological effects of type I serine/threonine kinase receptors and Smad proteins were examined using an adenovirus-based vector system. Constitutively active forms of bone morphogenetic protein (BMP) type I receptors (BMPR-IA and BMPR-IB; BMPR-I group) and those of activin receptor–like kinase (ALK)-1 and ALK-2 (ALK-1 group) induced alkaline phosphatase activity in C2C12 cells. Receptor-regulated Smads (R-Smads) that act in the BMP pathways, such as Smad1 and Smad5, also induced the alkaline phosphatase activity in C2C12 cells. BMP-6 dramatically enhanced alkaline phosphatase activity induced by Smad1 or Smad5, probably because of the nuclear translocation of R-Smads triggered by the ligand. Inhibitory Smads, i.e., Smad6 and Smad7, repressed the alkaline phosphatase activity induced by BMP-6 or the type I receptors. Chondrogenic differentiation of ATDC5 cells was induced by the receptors of the BMPR-I group but not by those of the ALK-1 group. However, kinase-inactive forms of the receptors of the ALK-1 and BMPR-I groups blocked chondrogenic differentiation. Although R-Smads failed to induce cartilage nodule formation, inhibitory Smads blocked it. Osteoblast differentiation induced by BMPs is thus mediated mainly via the Smad-signaling pathway, whereas chondrogenic differentiation may be transmitted by Smad-dependent and independent pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nuclear LIM domains interact with a family of coregulators referred to as Clim/Ldb/Nli. Although one family member, Clim-2/Ldb-1/Nli, is highly expressed in epidermal keratinocytes, no nuclear LIM domain factor is known to be expressed in epidermis. Therefore, we used the conserved LIM-interaction domain of Clim coregulators to screen for LIM domain factors in adult and embryonic mouse skin expression libraries and isolated a factor that is highly homologous to the previously described LIM-only proteins LMO-1, -2, and -3. This factor, referred to as LMO-4, is expressed in overlapping manner with Clim-2 in epidermis and in several other regions, including epithelial cells of the gastrointestinal, respiratory and genitourinary tracts, developing cartilage, pituitary gland, and discrete regions of the central and peripheral nervous system. Like LMO-2, LMO-4 interacts strongly with Clim factors via its LIM domain. Because LMO/Clim complexes are thought to regulate gene expression by associating with DNA-binding proteins, we used LMO-4 as a bait to screen for such DNA-binding proteins in epidermis and isolated the mouse homologue of Drosophila Deformed epidermal autoregulatory factor 1 (DEAF-1), a DNA-binding protein that interacts with regulatory sequences first described in the Deformed epidermal autoregulatory element. The interaction between LMO-4 and mouse DEAF-1 maps to a proline-rich C-terminal domain of mouse DEAF-1, distinct from the helix–loop–helix and GATA domains previously shown to interact with LMOs, thus defining an additional LIM-interacting domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin and role of IL-17, a T-cell derived cytokine, in cartilage and bone destruction during rheumatoid arthritis (RA) remain to be clarified. In human ex vivo models, addition of IL-17 enhanced IL-6 production and collagen destruction, and inhibited collagen synthesis by RA synovium explants. On mouse cartilage, IL-17 enhanced cartilage proteoglycan loss and inhibited its synthesis. On human RA bone explants, IL-17 also increased bone resorption and decreased formation. Addition of IL-1 in these conditions increased the effect of IL-17. Blocking of bone-derived endogenous IL-17 with specific inhibitors resulted in a protective inhibition of bone destruction. Conversely, intra-articular administration of IL-17 into a normal mouse joint induced cartilage degradation. In conclusion, the contribution of IL-17 derived from synovium and bone marrow T cells to joint destruction suggests the control of IL-17 for the treatment of RA.