27 resultados para carcinogen-induced urothelial bladder lesions

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic events leading to the loss of heterozygosity (LOH) have been shown to play a crucial role in the development of cancer. However, LOH events do not occur only in genetically unstable cancer cells but also have been detected in normal somatic cells of mouse and man. Mice, in which one of the alleles for adenine phosphoribosyltransferase (Aprt) has been disrupted by gene targeting, were used to investigate the potency of carcinogens to induce LOH in vivo. After 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) exposure, a 3-fold stronger mutagenic response was detected at the autosomal Aprt gene than at the X chromosomal hypoxantine-guanine phosphoribosyltransferase (Hprt) gene in splenic T-lymphocytes. Allele-specific PCR analysis showed that the normal, nontargeted Aprt allele was lost in 70% of the DMBA-induced Aprt mutants. Fluorescence in situ hybridization analysis demonstrated that the targeted allele had become duplicated in almost all DMBA-induced mutants that displayed LOH at Aprt. These results indicate that the main mechanisms by which DMBA caused LOH were mitotic recombination or chromosome loss and duplication but not deletion. However, after treatment with the alkylating agent N-ethyl-N-nitrosourea, Aprt had a similar mutagenic response to Hprt while the majority (90%) of N-ethyl-N-nitrosourea-induced Aprt mutants had retained both alleles. Unexpectedly, irradiation with x-rays, which induce primarily large deletions, resulted in a significant increase of the mutant frequency at Hprt but not at Aprt. This in vivo study clearly indicates that, in normal somatic cells, carcinogen exposure can result in the induction of LOH events that are compatible with cell survival and may represent an initiating event in tumorigenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been postulated that ionizing radiation produces a unique form of cellular DNA damage called “clustered damages” or “multiply damaged sites”. Here, we show that clustered DNA damages are indeed formed in Escherichia coli by ionizing radiation and are converted to lethal double-strand breaks during attempted base-excision repair. In wild-type cells possessing the oxidative DNA glycosylases that cleave DNA at repairable single damages, double-strand breaks are formed at radiation-induced clusters during postirradiation incubation and also in a dose-dependent fashion. E. coli mutants lacking these enzymes do not form double-strand breaks postirradiation and are substantially more radioresistant than wild-type cells. Furthermore, overproduction of one of the oxidative DNA glycosylases in mutant cells confers a radiosensitive phenotype and an increase in the number of double-strand breaks. Thus, the effect of the oxidative DNA glycosylases in potentiating DNA damage must be considered when estimating radiation risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We hypothesized that feeding pregnant rats with a high-fat diet would increase both circulating 17β-estradiol (E2) levels in the dams and the risk of developing carcinogen-induced mammary tumors among their female offspring. Pregnant rats were fed isocaloric diets containing 12% or 16% (low fat) or 43% or 46% (high fat) of calories from corn oil, which primarily contains the n − 6 polyunsaturated fatty acid (PUFA) linoleic acid, throughout pregnancy. The plasma concentrations of E2 were significantly higher in pregnant females fed a high n − 6 PUFA diet. The female offspring of these rats were fed with a laboratory chow from birth onward, and when exposed to 7,12-dimethylbenz(a)anthracene had a significantly higher mammary tumor incidence (60% vs. 30%) and shorter latency for tumor appearance (11.4 ± 0.5 weeks vs. 14.2 ± 0.6 weeks) than the offspring of the low-fat mothers. The high-fat offspring also had puberty onset at a younger age, and their mammary glands contained significantly higher numbers of the epithelial structures that are the targets for malignant transformation. Comparable changes in puberty onset, mammary gland morphology, and tumor incidence were observed in the offspring of rats treated daily with 20 ng of E2 during pregnancy. These data, if extrapolated to humans, may explain the link among diet, early puberty onset, mammary parenchymal patterns, and breast cancer risk, and indicate that an in utero exposure to a diet high in n − 6 PUFA and/or estrogenic stimuli may be critical for affecting breast cancer risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hypothesis that chromosomal fragile sites may be “weak links” that result in hot spots for cancer-specific chromosome rearrangements was supported by the discovery that numerous cancer cell homozygous deletions and a familial translocation map within the FHIT gene, which encompasses the common fragile site, FRA3B. Sequence analysis of 276 kb of the FRA3B/FHIT locus and 22 associated cancer cell deletion endpoints shows that this locus is a frequent target of homologous recombination between long interspersed nuclear element sequences resulting in FHIT gene internal deletions, probably as a result of carcinogen-induced damage at FRA3B fragile sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full term pregnancy early in life is the most effective natural protection against breast cancer in women. Rats treated with chemical carcinogen are similarly protected by a previous pregnancy from mammary carcinogenesis. Proliferation and differentiation of the mammary gland does not explain this phenomenon, as shown by the relative ineffectiveness of perphenazine, a potent mitogenic and differentiating agent. Here, we show that short term treatment of nulliparous rats with pregnancy levels of estradiol 17β and progesterone has high efficacy in protecting them from chemical carcinogen induced mammary cancers. Because the mammary gland is exposed to the highest physiological concentrations of estradiol and progesterone during full term pregnancy, it is these elevated levels of hormones that likely induce protection from mammary cancer. Thus, it appears possible to mimic the protective effects of pregnancy against breast cancer in nulliparous rats by short term specific hormonal intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumors express peptide antigens capable of being recognized by tumor-specific cytotoxic T lymphocytes (CTL). Immunization of mice with a carcinogen-induced colorectal tumor, CT26, engineered to secrete granulocyte/macrophage colony-stimulating factor, routinely generated both short-term and long-term CTL lines that not only lysed the parental tumor in vitro, but also cured mice of established tumor following adoptive transfer in vivo. When either short-term or long-term CTL lines were used to screen peptides isolated from CT26, one reverse-phase high performance liquid chromatography peptide fraction consistently sensitized a surrogate target for specific lysis. The bioactivity remained localized within one fraction following multiple purification procedures, indicating that virtually all of the CT26-specific CTL recognized a single peptide. This result contrasts with other tumor systems, where multiple bioactive peptide fractions have been detected. The bioactive peptide was identified as a nonmutated nonamer derived from the envelope protein (gp70) of an endogenous ecotropic murine leukemia provirus. Adoptive transfer with CTL lines specific for this antigen demonstrated that this epitope represents a potent tumor rejection antigen. The selective expression of this antigen in multiple non-viral-induced tumors provides evidence for a unique class of shared immunodominant tumor associated antigens as targets for antitumor immunity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The XPD/ERCC2/Rad3 gene is required for excision repair of UV-damaged DNA and is an important component of nucleotide excision repair. Mutations in the XPD gene generate the cancer-prone syndrome, xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. XPD has a 5′- to 3′-helicase activity and is a component of the TFIIH transcription factor, which is essential for RNA polymerase II elongation. We present here the characterization of the Drosophila melanogaster XPD gene (DmXPD). DmXPD encodes a product that is highly related to its human homologue. The DmXPD protein is ubiquitous during development. In embryos at the syncytial blastoderm stage, DmXPD is cytoplasmic. At the onset of transcription in somatic cells and during gastrulation in germ cells, DmXPD moves to the nuclei. Distribution analysis in polytene chromosomes shows that DmXPD is highly concentrated in the interbands, especially in the highly transcribed regions known as puffs. UV-light irradiation of third-instar larvae induces an increase in the signal intensity and in the number of sites where the DmXPD protein is located in polytene chromosomes, indicating that the DmXPD protein is recruited intensively in the chromosomes as a response to DNA damage. This is the first time that the response to DNA damage by UV-light irradiation can be visualized directly on the chromosomes using one of the TFIIH components.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We previously reported that CO2 laser incisions in carcinogen-initiated fields promoted cancer development and caused release of growth factors. Here we examined the quantitative and additive properties of this tumor-promoting event and examined whether this promotion could be nullified by treatment with a bombesin antagonist, which down-regulates epidermal growth factor receptors. The model used for cancer promotion was the hamster buccal cheek pouch that had been treated with a carcinogen (9,10-dimethyl-1,2-benzanthracene) for 6 weeks, producing premalignant lesions. These lesions would evolve into a cancer eventually without further treatment. Promotion was measured both by increased fluorescence in response to systemically administered Photofrin, measured noninvasively using an in vivo fluorescence photometer, and by the timing of appearance of clinical tumors. Laser incisions (0-3) were made into the hamster cheek 1 week apart, or three incisions were done 1 day apart. Another group of animals received bombesin antagonist RC-3095 for 4 weeks during the time incisions were made, again measuring promotion. Laser incisions 1 week apart produced additive promotion, whereas three incisions 1 day apart were not statistically different from the group receiving only one incision. RC-3095 treatment completely eliminated the promoting effects of incision and totally stopped promotion for the 4-week period of treatment. After discontinuing treatment with RC-3095, lesion progression resumed at the untreated control rate. This work confirms that the promoting event of a laser incision follows a comparable time course to release of growth factors after such an incision and that it can be eliminated by treatment with bombesin antagonists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic characteristics of reflex eye movements were measured in two strains of chronically prepared mice by using an infrared television camera system. The horizontal vestibulo-ocular reflex (HVOR) and horizontal optokinetic response (HOKR) were induced by sinusoidal oscillations of a turntable, in darkness, by 10° (peak to peak) at 0.11–0.50 Hz and of a checked-pattern screen, in light, by 5–20°at 0.11–0.17 Hz, respectively. The gains and phases of the HVOR and HOKR of the C57BL/6 mice were nearly equivalent to those of rabbits and rats, whereas the 129/Sv mice exhibited very low gains in the HVOR and moderate phase lags in the HOKR, suggesting an inherent sensory-motor anomaly. Adaptability of the HOKR was examined in C57BL/6 mice by sustained screen oscillation. When the screen was oscillated by 10° at 0.17 Hz, which induced sufficient retinal slips, the gain of the HOKR increased by 0.08 in 1 h on average, whereas the stimuli that induced relatively small or no retinal slips affected the gain very little. Lesions of the flocculi induced by local applications of 0.1% ibotenic acid and lesions of the inferior olivary nuclei induced by i.p. injection of 3-acetylpyridine in C57BL/6 mice little affected the dynamic characteristics of the HVOR and HOKR, but abolished the adaptation of the HOKR. These results indicate that the olivo-floccular system plays an essential role in the adaptive control of the ocular reflex in mice, as suggested in other animal species. The data presented provide the basis for analyzing the reflex eye movements of genetically engineered mice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a technique, methylation-specific PCR in situ hybridization (MSP-ISH), which allows for the methylation status of specific DNA sequences to be visualized in individual cells. We use MSP-ISH to monitor the timing and consequences of aberrant hypermethylation of the p16 tumor suppresser gene during the progression of cancers of the lung and cervix. Hypermethylation of p16 was localized only to the neoplastic cells in both in situ lesions and invasive cancers, and was associated with loss of p16 protein expression. MSP-ISH allowed us to dissect the surprising finding that p16 hypermethylation occurs in cervical carcinoma. This tumor is associated with infection of the oncogenic human papillomavirus, which expresses a protein, E7, that inactivates the retinoblastoma (Rb) protein. Thus, simultaneous Rb and p16 inactivation would not be needed to abrogate the critical cyclin D–Rb pathway. MSP-ISH reveals that p16 hypermethylation occurs heterogeneously within early cervical tumor cell populations that are separate from those expressing viral E7 transcripts. In advanced cervical cancers, the majority of cells have a hypermethylated p16, lack p16 protein, but no longer express E7. These data suggest that p16 inactivation is selected as the most effective mechanism of blocking the cyclin D–Rb pathway during the evolution of an invasive cancer from precursor lesions. These studies demonstrate that MSP-ISH is a powerful approach for studying the dynamics of aberrant methylation of critical tumor suppressor genes during tumor evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inorganic arsenic, a human carcinogen, is enzymatically methylated for detoxication, consuming S-adenosyl-methionine (SAM) in the process. The fact that DNA methyltransferases (MeTases) require this same methyl donor suggests a role for methylation in arsenic carcinogenesis. Here we test the hypothesis that arsenic-induced initiation results from DNA hypomethylation caused by continuous methyl depletion. The hypothesis was tested by first inducing transformation in a rat liver epithelial cell line by chronic exposure to low levels of arsenic, as confirmed by the development of highly aggressive, malignant tumors after inoculation of cells into Nude mice. Global DNA hypomethylation occurred concurrently with malignant transformation and in the presence of depressed levels of S-adenosyl-methionine. Arsenic-induced DNA hypomethylation was a function of dose and exposure duration, and remained constant even after withdrawal of arsenic. Hyperexpressibility of the MT gene, a gene for which expression is clearly controlled by DNA methylation, was also detected in transformed cells. Acute arsenic or arsenic at nontransforming levels did not induce global hypomethylation of DNA. Whereas transcription of DNA MeTase was elevated, the MeTase enzymatic activity was reduced with arsenic transformation. Taken together, these results indicate arsenic can act as a carcinogen by inducing DNA hypomethylation, which in turn facilitates aberrant gene expression, and they constitute a tenable theory of mechanism in arsenic carcinogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Translesion synthesis at replication-blocking lesions requires the induction of proteins that are controlled by the SOS system in Escherichia coli. Of the proteins identified so far, UmuD′, UmuC, and RecA* were shown to facilitate replication across UV-light-induced lesions, yielding both error-free and mutagenic translesion-synthesis products. Similar to UV lesions, N-2-acetylaminofluorene (AAF), a chemical carcinogen that forms covalent adducts at the C8 position of guanine residues, is a strong replication-blocking lesion. Frameshift mutations are induced efficiently by AAF adducts when located within short repetitive sequences in a two-step mechanism; AAF adducts incorporate a cytosine across from the lesion and then form a primer-template misaligned intermediate that, upon elongation, yields frameshift mutations. Recently, we have shown that although elongation from the nonslipped intermediate depends on functional umuDC+ gene products, elongation from the slipped intermediate is umuDC+-independent but requires another, as yet biochemically uncharacterized, SOS function. We now show that in DNA Polymerase III-proofreading mutant strains (dnaQ49 and mutD5 strains), elongation from the slipped intermediate is highly efficient in the absence of SOS induction—in contrast to elongation from the nonslipped intermediate, which still requires UmuDC functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinoids, synthetic and natural analogs of retinoic acid, exhibit potent growth inhibitory and cell differentiation activities that account for their beneficial effects in treating hyperproliferative diseases such as psoriasis, actinic keratosis, and certain neoplasias. Tazarotene is a synthetic retinoid that is used in the clinic for the treatment of psoriasis. To better understand the mechanism of retinoid action in the treatment of hyperproliferative diseases, we used a long-range differential display–PCR to isolate retinoid-responsive genes from primary human keratinocytes. We have identified a cDNA, tazarotene-induced gene 3 (TIG3; Retinoic Acid Receptor Responder 3) showing significant homology to the class II tumor suppressor gene, H-rev 107. Tazarotene treatment increases TIG3 expression in primary human keratinocytes and in vivo in psoriatic lesions. Increased TIG3 expression is correlated with decreased proliferation. TIG3 is expressed in a number of tissues, and expression is reduced in cancer cell lines and some primary tumors. In breast cancer cell lines, retinoid-dependent TIG3 induction is observed in lines that are growth suppressed by retinoids but not in nonresponsive lines. Transient over-expression of TIG3 in T47D or Chinese hamster ovary cells inhibits colony expansion. Finally, studies in 293 cells expressing TIG3 linked to an inducible promoter demonstrated decreased proliferation with increased TIG3 levels. These studies suggest that TIG3 may be a growth regulator that mediates some of the growth suppressive effects of retinoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.