3 resultados para carbonyl cluster rhodium bismuth crystal structurecatalysis
em National Center for Biotechnology Information - NCBI
Resumo:
Proteins such as the product of the breakpoint cluster region, chimaerin, and the Src homology 3-binding protein 3BP1, are GTPase activating proteins (GAPs) for members of the Rho subfamily of small GTP-binding proteins (G proteins or GTPases). A 200-residue region, named the breakpoint cluster region-homology (BH) domain, is responsible for the GAP activity. We describe here the crystal structure of the BH domain from the p85 subunit of phosphatidylinositol 3-kinase at 2.0 Å resolution. The domain is composed of seven helices, having a previously unobserved arrangement. A core of four helices contains most residues that are conserved in the BH family. Their packing suggests the location of a G-protein binding site. This structure of a GAP-like domain for small GTP-binding proteins provides a framework for analyzing the function of this class of molecules.
Resumo:
Proteins play an important role in the biological mechanisms controlling hard tissue development, but the details of molecular recognition at inorganic crystal interfaces remain poorly characterized. We have applied a recently developed homonuclear dipolar recoupling solid-state NMR technique, dipolar recoupling with a windowless sequence (DRAWS), to directly probe the conformation of an acidic peptide adsorbed to hydroxyapatite (HAP) crystals. The phosphorylated hexapeptide, DpSpSEEK (N6, where pS denotes phosphorylated serine), was derived from the N terminus of the salivary protein statherin. Constant-composition kinetic characterization demonstrated that, like the native statherin, this peptide inhibits the growth of HAP seed crystals when preadsorbed to the crystal surface. The DRAWS technique was used to measure the internuclear distance between two 13C labels at the carbonyl positions of the adjacent phosphoserine residues. Dipolar dephasing measured at short mixing times yielded a mean separation distance of 3.2 ± 0.1 Å. Data obtained by using longer mixing times suggest a broad distribution of conformations about this average distance. Using a more complex model with discrete α-helical and extended conformations did not yield a better fit to the data and was not consistent with chemical shift analysis. These results suggest that the peptide is predominantly in an extended conformation rather than an α-helical state on the HAP surface. Solid-state NMR approaches can thus be used to determine directly the conformation of biologically relevant peptides on HAP surfaces. A better understanding of peptide and protein conformation on biomineral surfaces may provide design principles useful for the modification of orthopedic and dental implants with coatings and biological growth factors that are designed to enhance biocompatibility with surrounding tissue.
Resumo:
We have determined the structure of a DEAD box putative RNA helicase from the hyperthermophile Methanococcus jannaschii. Like other helicases, the protein contains two α/β domains, each with a recA-like topology. Unlike other helicases, the protein exists as a dimer in the crystal. Through an interaction that resembles the dimer interface of insulin, the amino-terminal domain's 7-strand β-sheet is extended to 14 strands across the two molecules. Motifs conserved in the DEAD box family cluster in the cleft between domains, and many of their functions can be deduced by mutational data and by comparison with other helicase structures. Several lines of evidence suggest that motif III Ser-Ala-Thr may be involved in binding RNA.