11 resultados para candida tropicalis
em National Center for Biotechnology Information - NCBI
Resumo:
There is an immediate need for identification of new antifungal targets in opportunistic pathogenic fungi like Candida albicans. In the past, efforts have focused on synthesis of chitin and glucan, which confer mechanical strength and rigidity upon the cell wall. This paper describes the molecular analysis of CaMNT1, a gene involved in synthesis of mannoproteins, the third major class of macromolecule found in the cell wall. CaMNT1 encodes an α-1,2-mannosyl transferase, which adds the second mannose residue in a tri-mannose oligosaccharide structure which represents O-linked mannan in C. albicans. The deduced amino acid sequence suggests that CaMnt1p is a type II membrane protein residing in a medial Golgi compartment. The absence of CaMnt1p reduced the ability of C. albicans cells to adhere to each other, to human buccal epithelial cells, and to rat vaginal epithelial cells. Both heterozygous and homozygous Camnt1 null mutants of C. albicans showed strong attenuation of virulence in guinea pig and mouse models of systemic candidosis, which, in guinea pigs, could be attributed to a decreased ability to reach and/or adhere internal organs. Therefore, correct CaMnt1p-mediated O-linked mannosylation of proteins is critical for adhesion and virulence of C. albicans.
Resumo:
Two-component histidine kinases recently have been found in eukaryotic organisms including fungi, slime molds, and plants. We describe the identification of a gene, COS1, from the opportunistic pathogen Candida albicans by using a PCR-based screening strategy. The sequence of COS1 indicates that it encodes a homolog of the histidine kinase Nik-1 from the filamentous fungus Neurospora crassa. COS1 is also identical to a gene called CaNIK1 identified in C. albicans by low stringency hybridization using CaSLN1 as a probe [Nagahashi, S., Mio, T., Yamada-Okabe, T., Arisawa, M., Bussey, H. & Yamada-Okabe, H. (1998) Microbiol. 44, 425–432]. We assess the function of COS1/CaNIK1 by constructing a diploid deletion mutant. Mutants lacking both copies of COS1 appear normal when grown as yeast cells; however, they exhibit defective hyphal formation when placed on solid agar media, either in response to nutrient deprivation or serum. In constrast to the Δnik-1 mutant, the Δcos1/Δcos1 mutant does not demonstrate deleterious effects when grown in media of high osmolarity; however both Δnik-1 and Δcos1/Δcos1 mutants show defective hyphal formation. Thus, as predicted for Nik-1, Cos1p may be involved in some aspect of hyphal morphogenesis and may play a role in virulence properties of the organism.
Resumo:
The CST20 gene of Candida albicans was cloned by functional complementation of a deletion of the STE20 gene in Saccharomyces cerevisiae. CST20 encodes a homolog of the Ste20p/p65PAK family of protein kinases. Colonies of C. albicans cells deleted for CST20 revealed defects in the lateral formation of mycelia on synthetic solid “Spider” media. However, hyphal development was not impaired in some other media. A similar phenotype was caused by deletion of HST7, encoding a functional homolog of the S. cerevisiae Ste7p protein kinase. Overexpression of HST7 partially complemented the deletion of CST20. Cells deleted for CST20 were less virulent in a mouse model for systemic candidiasis. Our results suggest that more than one signaling pathway can trigger hyphal development in C. albicans, one of which has a protein kinase cascade that is analogous to the mating response pathway in S. cerevisiae and might have become adapted to the control of mycelial formation in asexual C. albicans.
Resumo:
The Candida albicans genes, CST20 and HST7, were cloned by their ability to suppress the mating defects of Saccharomyces cerevisiae mutants in the ste20 and ste7 genes, which code for elements of the mating mitogen-activated protein (MAP) kinase pathway. These Candida genes are both structural and functional homologs of the cognate Saccharomyces genes. The pattern of suppression in Saccharomyces is related to their presumptive position in the MAP kinase cascade. Null alleles of these genes were constructed in Candida. The Candida homozygous null mutants are defective in hyphal formation on some media, but are still induced to form hyphae by serum, showing that serum induction of hyphae is independent of the MAP kinase cascade. The Candida heterozygotes CST20/cst20 and HST7/hst7 are also defective in hyphal formation. This lack of dominance of the wild-type allele suggests that gene dosage is important in Candida.
Resumo:
Mitogen-activated protein (MAP) kinases are pivotal components of eukaryotic signaling cascades. Phosphorylation of tyrosine and threonine residues activates MAP kinases, but either dual-specificity or monospecificity phosphatases can inactivate them. The Candida albicans CPP1 gene, a structural member of the VH1 family of dual- specificity phosphatases, was previously cloned by its ability to block the pheromone response MAP kinase cascade in Saccharomyces cerevisiae. Cpp1p inactivated mammalian MAP kinases in vitro and acted as a tyrosine-specific enzyme. In C. albicans a MAP kinase cascade can trigger the transition from the budding yeast form to a more invasive filamentous form. Disruption of the CPP1 gene in C. albicans derepressed the yeast to hyphal transition at ambient temperatures, on solid surfaces. A hyphal growth rate defect under physiological conditions in vitro was also observed and could explain a reduction in virulence associated with reduced fungal burden in the kidneys seen in a systemic mouse model. A hyper-hyphal pathway may thus have some detrimental effects on C. albicans cells. Disruption of the MAP kinase homologue CEK1 suppressed the morphological effects of the CPP1 disruption in C. albicans. The results presented here demonstrate the biological importance of a tyrosine phosphatase in cell-fate decisions and virulence in C. albicans.
Resumo:
Candida albicans is a diploid fungus that has become a medically important opportunistic pathogen in immunocompromised individuals. We have sequenced the C. albicans genome to 10.4-fold coverage and performed a comparative genomic analysis between C. albicans and Saccharomyces cerevisiae with the objective of assessing whether Candida possesses a genetic repertoire that could support a complete sexual cycle. Analyzing over 500 genes important for sexual differentiation in S. cerevisiae, we find many homologues of genes that are implicated in the initiation of meiosis, chromosome recombination, and the formation of synaptonemal complexes. However, others are striking in their absence. C. albicans seems to have homologues of all of the elements of a functional pheromone response pathway involved in mating in S. cerevisiae but lacks many homologues of S. cerevisiae genes for meiosis. Other meiotic gene homologues in organisms ranging from filamentous fungi to Drosophila melanogaster and Caenorhabditis elegans were also found in the C. albicans genome, suggesting potential alternative mechanisms of genetic exchange.
Resumo:
The yeast Candida albicans has a distinguishing feature, dimorphism, which is the ability to switch between two morphological forms: a budding yeast form and a multicellular invasive filamentous form. This ability has been postulated to contribute to the virulence of this organism. Studies on the morphological transition from a filamentous to a budding yeast form in C. albicans have shown that this organism excretes an autoregulatory substance into the culture medium. This substance was extracted and purified by normal-phase and reversed-phase HPLC. The autoregulatory substance was structurally identified as 3,7,11-trimethyl-2,6,10-dodecatrienoate (farnesoic acid) by NMR and mass spectrometry. Growth experiments suggest that this substance does not inhibit yeast cell growth but inhibits filamentous growth. These findings have implications for developmental signaling by the fungus and might have medicinal value in the development of antifungal therapies.
Resumo:
The life history of Candida albicans presents an enigma: this species is thought to be exclusively asexual, yet strains show extensive phenotypic variation. To address the population genetics of C. albicans, we developed a genetic typing method for codominant single-locus markers by screening randomly amplified DNA for single-strand conformation polymorphisms. DNA fragments amplified by arbitrary primers were initially screened for single-strand conformation polymorphisms and later sequenced using locus-specific primers. A total of 12 single base mutations and insertions were detected from six out of eight PCR fragments. Patterns of sequence-level polymorphism observed for individual strains detected considerable heterozygosity at the DNA sequence level, supporting the view that most C. albicans strains are diploid. Population genetic analyses of 52 natural isolates from Duke University Medical Center provide evidence for both clonality and recombination in C. albicans. Evidence for clonality is supported by the presence of several overrepresented genotypes, as well as by deviation of genotypic frequencies from random (Hardy-Weinberg) expectations. However, tests for nonrandom association of alleles across loci reveal less evidence for linkage disequilibrium than expected for strictly clonal populations. Although C. albicans populations are primarily clonal, evidence for recombination suggests that sexual reproduction or some other form of genetic exchange occurs in this species.
Resumo:
The existence of integrin-like proteins in Candida albicans has been postulated because monoclonal antibodies to the leukocyte integrins alpha M and alpha X bind to blastospores and germ tubes, recognize a candidal surface protein of approximately 185 kDa, and inhibit candidal adhesion to human epithelium. The gene alpha INT1 was isolated from a library of C. albicans genomic DNA by screening with a cDNA probe from the transmembrane domain of human alpha M. The predicted polypeptide (alpha Int1p) of 188 kDa contains several motifs common to alpha M and alpha X: a putative I domain, two EF-hand divalent cation-binding sites, a transmembrane domain, and a cytoplasmic tail with a single tyrosine residue. An internal RGD tripeptide is also present. Binding of anti-peptide antibodies raised to potential extracellular domains of alpha Int1p confirms surface localization in C. albicans blastopores. By Southern blotting, alpha INT1 is unique to C. albicans. Expression of alpha INT1 under control of a galactose-inducible promoter led to the production of germ tubes in haploid Saccharomyces cerevisiae and in the corresponding ste12 mutant. Germ tubes were not observed in haploid yeast transformed with vector alone, in transformants expressing a galactose-inducible gene from Chlamydomonas, or in transformants grown in the presence of glucose or raffinose. Transformants producing alpha Int1p bound an anti-alpha M monoclonal antibody and exhibited enhanced aggregation. Studies of alpha Int1p reveal novel roles for primitive integrin-like proteins in adhesion and in STE12-independent morphogenesis.
Resumo:
We have analyzed the role of chitin, a cell-wall polysaccharide, in the virulence of Candida albicans. Mutants with a 5-fold reduction in chitin were obtained in two ways: (i) by selecting mutants resistant to Calcofluor, a fluorescent dye that binds to chitin and inhibits growth, and (ii) by disrupting CHS3, the C. albicans homolog of CSD2/CAL1/DIT101/KT12, a Saccharomyces cerevisiae gene required for synthesis of approximately 90% of the cell-wall chitin. Chitin-deficient mutants have no obvious alterations in growth rate, sugar assimilation, chlamydospore formation, or germ-tube formation in various media. When growing vegetatively in liquid media, the mutants tend to clump and display minor changes in morphology. Staining of cells with the fluorescent dye Calcofluor indicates that CHS3 is required for synthesis of the chitin rings found on the surface of yeast cells but not formation of septa in either yeast cells or germ tubes. Despite their relatively normal growth, the mutants are significantly less virulent than the parental strain in both immunocompetent and immunosuppressed mice; at 13 days after infection, survival was 95% in immunocompetent mice that received chs3/chs3 cells and 10% in immunocompetent mice that received an equal dose of chs3/CHS3 cells. Chitin-deficient strains can colonize the organs of infected mice, suggesting that the reduced virulence of the mutants is not due to accelerated clearing.
Resumo:
Chitinase (EC 3.2.1.14) is an important enzyme for the remodeling of chitin in the cell wall of fungi. We have cloned three chitinase genes (CHT1, CHT2, and CHT3) from the dimorphic human pathogen Candida albicans. CHT2 and CHT3 have been sequenced in full and their primary structures have been analyzed: CHT2 encodes a protein of 583 aa with a predicted size of 60.8 kDa; CHT3 encodes a protein of 567 aa with a predicted size of 60 kDa. All three genes show striking similarity to other chitinase genes in the literature, especially in the proposed catalytic domain. Transcription of CHT2 and CHT3 was greater when C. albicans was grown in a yeast phase as compared to a mycelial phase. A transcript of CHT1 could not be detected in either growth condition.