56 resultados para c MET gene

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation by growth factors of the Ras-dependent signaling cascade results in the induction of p90 ribosomal S6 kinases (p90rsk). These are translocated into the nucleus upon phosphorylation by mitogen-activated protein kinases, with which p90rsk are physically associated in the cytoplasm. In humans there are three isoforms of the p90rsk family, Rsk-1, Rsk-2, and Rsk-3, which are products of distinct genes. Although these isoforms are structurally very similar, little is known about their functional specificity. Recently, mutations in the Rsk-2 gene have been associated with the Coffin–Lowry syndrome (CLS). We have studied a fibroblast cell line established from a CLS patient that bears a nonfunctional Rsk-2. Here we document that in CLS fibroblasts there is a drastic attenuation in the induced Ser-133 phosphorylation of transcription factor CREB (cAMP response element-binding protein) in response to epidermal growth factor stimulation. The effect is specific, since response to serum, cAMP, and UV light is unaltered. Furthermore, epidermal growth factor-induced expression of c-fos is severely impaired in CLS fibroblasts despite normal phosphorylation of serum response factor and Elk-1. Finally, coexpression of Rsk-2 in transfected cells results in the activation of the c-fos promoter via the cAMP-responsive element. Thus, we establish a link in the transduction of a specific growth factor signal to changes in gene expression via the phosphorylation of CREB by Rsk-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrin-mediated adhesion induces several signaling pathways leading to regulation of gene transcription, control of cell cycle entry and survival from apoptosis. Here we investigate the involvement of the Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway in integrin-mediated signaling. Plating primary human endothelial cells from umbilical cord and the human endothelial cell line ECV304 on matrix proteins or on antibody to β1- or αv-integrin subunits induces transient tyrosine phosphorylation of JAK2 and STAT5A. Consistent with a role for the JAK/STAT pathway in regulation of gene transcription, adhesion to matrix proteins leads to the formation of STAT5A-containing complexes with the serum-inducible element of c-fos promoter. Stable expression of a dominant negative form of STAT5A in NIH3T3 cells reduces fibronectin-induced c-fos mRNA expression, indicating the involvement of STAT5A in integrin-mediated c-fos transcription. Thus these data present a new integrin-dependent signaling mechanism involving the JAK/STAT pathway in response to cell–matrix interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

c-Maf is a bZip transcription factor expressed in developmental and cellular differentiation processes. Recently, a c-maf knockout mouse model, showing abnormal lens development, has been reported. In order to study the regulation mechanisms of c-maf gene expression during the differentiation process we have cloned and functionally characterized the rat c-maf (maf-2) gene. The rat c-maf gene is an intronless gene, covering a length of 3.5 kb. Transient transfection analysis of the 5′-flanking region of the c-maf gene using luciferase as the reporter gene shows that Pax6, a master transcription factor for lens development, strongly activates the c-maf promoter construct. Endogenous c-maf is also activated by the Pax6 expression vector. Electrophoresis mobility shift assay and DNase I footprinting analysis show that at least three Pax6-binding sites are located in the 5′-flanking and 5′-non-coding regions of the rat c-maf gene. The c-maf gene was also markedly activated by its own product, c-Maf, through the MARE (Maf recognition element), suggesting that a positive autoregulatory mechanism controls this gene. In situ hybridization histochemical detection of Pax6 and c-Maf in the E14 lens showed that both mRNAs are expressed in the lens equator where lens epithelial cells are differentiating to lens fiber cells. These results suggest that a Pax6/c-Maf transcription factor cascade is working in lens development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pax3 is a transcription factor whose expression has been used as a marker of myogenic precursor cells arising in the lateral somite destined to migrate to and populate the limb musculature. Accruing evidence indicates that the embryologic origins of axial and appendicular muscles are distinct, and limb muscle abnormalities in both mice and humans harboring Pax3 mutations support this distinction. The mechanisms by which Pax3 affects limb muscle development are unknown. The tyrosine kinase receptor for hepatocyte growth factor/scatter factor encoded by the c-met protooncogene is also expressed in limb muscle progenitors and, like Pax-3, is required in the mouse for limb muscle development. Here, we show that c-met expression is markedly reduced in the lateral dermomyotome of Splotch embryos lacking Pax3. We show that Pax3 can stimulate c-met expression in cultured cells, and we identify a potential Pax3 binding site in the human c-MET promoter that may contribute to direct transcriptional regulation. In addition, we have found that several cell lines derived from patients with rhabdomyosarcomas caused by a t(2;13) chromosomal translocation activating PAX3 express c-MET, whereas those rhabdomyosarcoma cell lines examined without the translocation do not. These results are consistent with a model in which Pax3 modulates c-met expression in the lateral dermomyotome, a function that is required for the appropriate migration of these myogenic precursors to the limb where the ligand for c-met (hepatocyte growth factor/scatter factor) is expressed at high levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

beta 2-Microglobulin is an essential subunit of major histocompatibility complex (Mhc) class I molecules, which present antigenic peptides to T lymphocytes. We sequenced a number of cDNAs and two genomic clones corresponding to chicken beta 2-microglobulin. The chicken beta 2-microglobulin gene has a similar genomic organization but smaller introns and higher G+C content than mammalian beta 2-microglobulin genes. The promoter region is particularly G+C-rich and contains, in addition to interferon regulatory elements, potential S/W, X, and Y boxes that were originally described for mammalian class II but not class I alpha or beta 2-microglobulin genes. There is a single chicken beta 2-microglobulin gene that has little polymorphism in the coding region. Restriction fragment length polymorphisms from Mhc homozygous lines, Mhc congenic lines, and backcross families, as well as in situ hybridization, show that the beta 2-microglobulin gene is located on a microchromosome different from the one that contains the chicken Mhc. We propose that the structural similarities between the beta 2-microglobulin and Mhc genes in the chicken are due to their presence on microchromosomes and suggest that these features and the microchromosomes appeared by deletion of DNA in the lineage leading to the birds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify changes in gene expression that occur in chicken embryo brain (CEB) cells as a consequence of their binding to the extracellular matrix molecule cytotactin/tenascin (CT/TN), a subtractive hybridization cloning strategy was employed. One of the cDNA clones identified was predicted to encode 381 amino acids and although it did not resemble any known sequences in the nucleic acid or protein data bases, it did contain the sequence motif for the cysteine-rich C3HC4 type of zinc finger, also known as a RING-finger. This sequence was therefore designated the chicken-RING zinc finger (C-RZF). In addition to the RING-finger, the C-RZF sequence also contained motifs for a leucine zipper, a nuclear localization signal, and a stretch of acidic amino acids similar to the activation domains of some transcription factors. Southern analysis suggested that C-RZF is encoded by a single gene. Northern and in situ hybridization analyses of E8 chicken embryo tissues indicated that expression of the C-RZF gene was restricted primarily to brain and heart. Western analysis of the nuclear and cytoplasmic fractions of chicken embryo heart cells and immunofluorescent staining of chicken embryo cardiocytes with anti-C-RZF antibodies demonstrated that the C-RZF protein was present in the nucleus. The data suggest that we have identified another member of the RING-finger family of proteins whose expression in CEB cells may be affected by CT/TN and whose nuclear localization and sequence motifs predict a DNA-binding function in the nucleus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein phosphatase 2A (PP2A) is a multimeric enzyme, containing a catalytic subunit complexed with two regulatory subunits. The catalytic subunit PP2A C is encoded by two distinct and unlinked genes, termed Cα and Cβ. The specific function of these two catalytic subunits is unknown. To address the possible redundancy between PP2A and related phosphatases as well as between Cα and Cβ, the Cα subunit gene was deleted by homologous recombination. Homozygous null mutant mice are embryonically lethal, demonstrating that the Cα subunit gene is an essential gene. As PP2A exerts a range of cellular functions including cell cycle regulation and cell fate determination, we were surprised to find that these embryos develop normally until postimplantation, around embryonic day 5.5/6.0. While no Cα protein is expressed, we find comparable expression levels of PP2A C at a time when the embryo is degenerating. Despite a 97% amino acid identity, Cβ cannot completely compensate for the absence of Cα. Degenerated embryos can be recovered even at embryonic day 13.5, indicating that although embryonic tissue is still capable of proliferating, normal differentiation is significantly impaired. While the primary germ layers ectoderm and endoderm are formed, mesoderm is not formed in degenerating embryos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Drosophila retinal degeneration C (rdgC) gene encodes an unusual protein serine/threonine phosphatase in that it contains at least two EF-hand motifs at its carboxy terminus. By a combination of large-scale sequencing of human retina cDNA clones and searches of expressed sequence tag and genomic DNA databases, we have identified two sequences in mammals [Protein Phosphatase with EF-hands-1 and 2 (PPEF-1 and PPEF-2)] and one in Caenorhabditis elegans (PPEF) that closely resemble rdgC. In the adult, PPEF-2 is expressed specifically in retinal rod photoreceptors and the pineal. In the retina, several isoforms of PPEF-2 are predicted to arise from differential splicing. The isoform that most closely resembles rdgC is localized to rod inner segments. Together with the recently described localization of PPEF-1 transcripts to primary somatosensory neurons and inner ear cells in the developing mouse, these data suggest that the PPEF family of protein serine/threonine phosphatases plays a specific and conserved role in diverse sensory neurons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The expression of cell-specialization genes is likely to be changing in tumor cells as their differentiation declines. Functional changes in these genes might yield unusual peptide epitopes with anti-tumor potential and could occur without modification in the DNA sequence of the gene. Melanomas undergo a characteristic decline in melanization that may reflect altered contributions of key melanocytic genes such as tyrosinase. Quantitative reverse transcriptase–PCR of the wild-type (C) tyrosinase gene in transgenic (C57BL/6 strain) mouse melanomas has revealed a shift toward alternative splicing of the pre-mRNA that generated increased levels of the Δ1b and Δ1d mRNA splice variants. The spontaneous c2j albino mutation of tyrosinase (in the C57BL/6 strain) changes the pre-mRNA splicing pattern. In c2j/c2j melanomas, alternative splicing was again increased. However, while some mRNAs (notably Δ1b) present in C/C were obligatorily absent, others (Δ3 and Δ1d) were elevated. In c2j/c2j melanomas, the percentage of total tyrosinase transcripts attributable to Δ3 reached approximately 2-fold the incidence in c2j/c2j or C/C skin melanocytes. The percentage attributable to Δ1d rose to approximately 2-fold the incidence in c2j/c2j skin, and to 10-fold that in C/C skin. These differences provide a basis for unique mouse models in which the melanoma arises in skin grafted from a C/C or c2j/c2j transgenic donor to a transgenic host of the same or opposite tyrosinase genotype. Immunotherapy designs then could be based on augmenting those antigenic peptides that are novel or overrepresented in a tumor relative to the syngeneic host.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The induced expression of c-Myc in plasmacytomas in BALB/c mice is regularly associated with nonrandom chromosomal translocations that juxtapose the c-myc gene to one of the Ig loci on chromosome 12 (IgH), 6 (IgK), or 16 (IgL). The DCPC21 plasmacytoma belongs to a small group of plasmacytomas that are unusual in that they appear to be translocation-negative. In this paper, we show the absence of any c-myc-activating chromosomal translocation for the DCPC21 by using fluorescent in situ hybridization, chromosome painting, and spectral karyotyping. We find that DCPC21 harbors c-myc and IgH genes on extrachromosomal elements (EEs) from which c-myc is transcribed, as shown by c-myc mRNA tracks and extrachromosomal gene transfer experiments. The transcriptional activity of these EEs is supported further by the presence of the transcription-associated phosphorylation of histone H3 (H3P) on the EEs. Thus, our data suggest that in this plasmacytoma, c-Myc expression is achieved by an alternative mechanism. The expression of the c-Myc oncoprotein is initiated outside the chromosomal locations of the c-myc gene, i.e., from EEs, which can be considered functional genetic units. Our data also imply that other “translocation-negative” experimental and human tumors with fusion transcripts or oncogenic activation may indeed carry translocation(s), however, in an extrachromosomal form.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic changes in insects that lead to insecticide resistance include point mutations and up-regulation/amplification of detoxification genes. Here, we report a third mechanism, resistance caused by an absence of gene product. Mutations of the Methoprene-tolerant (Met) gene of Drosophila melanogaster result in resistance to both methoprene, a juvenile hormone (JH) agonist insecticide, and JH. Previous results have demonstrated a mechanism of resistance involving an intracellular JH binding protein that has reduced ligand affinity in Met flies. We show that a γ-ray induced allele, Met27, completely lacks Met transcript during the insecticide-sensitive period in development. Although Met27 homozygotes have reduced oogenesis, they are viable, demonstrating that Met is not a vital gene. Most target-site resistance genes encode vital proteins and thus have few mutational changes that permit both resistance and viability. In contrast, resistance genes such as Met that encode nonvital insecticide target proteins can have a variety of mutational changes that result in an absence of functional gene product and thus should show higher rates of resistance evolution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To determine the mechanism of action responsible for the in vivo antitumor activity of a phosphorothioate antisense inhibitor targeted against human C-raf kinase (ISIS 5132, also known as CGP69846A), a series of mismatched phosphorothioate analogs of ISIS 5132 or CGP69846A were synthesized and characterized with respect to hybridization affinity, inhibitory effects on C-raf gene expression in vitro, and antitumor activity in vivo. Incorporation of a single mismatch into the sequence of ISIS 5132 or CGP69846A resulted in reduced hybridization affinity toward C-raf RNA sequences and reduced inhibitory activity against C-raf expression in vitro and tumor growth in vivo. Moreover, incorporation of additional mismatches resulted in further loss of in vitro and in vivo activity in a manner that correlated well with a hybridization-based (i.e., antisense) mechanism of action. These results provide important experimental evidence supporting an antisense mechanism of action underlying the in vivo antitumor activity displayed by ISIS 5132 or CGP69846A.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

LXRα is a member of a nuclear receptor superfamily that regulates transcription. LXRα forms a heterodimer with RXRα, another member of this family, to regulate the expression of cholesterol 7α-hydroxylase by means of binding to the DR4-type cis-element. Here, we describe a function for LXRα as a cAMP-responsive regulator of renin and c-myc gene transcriptions by the interaction with a specific cis-acting DNA element, CNRE (an overlapping cAMP response element and a negative response element). Our previous studies showed that renin gene expression is regulated by cAMP, at least partly, through the CNRE sequence in its 5′-flanking region. This sequence is also found in c-myc and several other genes. Based on our cloning results using the yeast one-hybrid system, we discovered that the mouse homologue of human LXRα binds to the CNRE and demonstrated that it binds as a monomer. To define the function of LXRα on gene expression, we transfected the renin-producing renal As4.1 cells with LXRα expression plasmid. Overexpression of LXRα in As4.1 cells confers cAMP inducibility to reporter constructs containing the renin CNRE. After stable transfection of LXRα, As4.1 cells show a cAMP-inducible up-regulation of renin mRNA expression. In parallel experiments, we demonstrated that LXRα can also bind to the homologous CNRE in the c-myc promoter. cAMP promotes transcription through c-myc/CNRE:LXRα interaction in LXRα transiently transfected cells and increases c-myc mRNA expression in stably transfected cells. Identification of LXRα as a cAMP-responsive nuclear modulator of renin and c-myc expression not only has cardiovascular significance but may have generalized implication in the regulation of gene transcription.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During adipocyte differentiation, the expression of C/EBPα is activated, which in turn serves to transcriptionally activate numerous adipocyte genes. A previous search for cis elements that regulate transcription of the C/EBPα gene led to the identification of a potential repressive element within the proximal 5′ flanking region of the gene. Nuclear extracts from 3T3-L1 preadipocytes, but not adipocytes, were found to contain a factor, CUP (C/EBPα undifferentiated protein), that binds to this site (the CUP-1 site). In the present investigation, we show that C/EBPα promoter-luciferase constructs containing both the proximal 5′ flanking and the entire 5′ untranslated regions of the gene exhibit an expression pattern during adipocyte differentiation comparable to that of the endogenous C/EBPα gene. Mutation of the CUP-1 site in these constructs had little effect on reporter gene expression; however, when this mutation was combined with deletion of the 5′ untranslated region, reporter gene expression by preadipocytes was dramatically up-regulated. Consistent with this finding, a second CUP binding site (the CUP-2 site) was identified in the 5′ untranslated region. Although mutation of either CUP element in constructs containing both the 5′ flanking and 5′ untranslated region had little effect on reporter gene transcription, mutation of both CUP elements markedly activated transcription. Thus, it appears that dual CUP regulatory elements repress transcription of the C/EBPα gene prior to induction of the adipocyte differentiation program.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transcription factors belonging to the CCAAT-enhancer binding protein (C/EBP) family have been implicated in the regulation of gene expression during differentiation, development and disease. Autoregulation is relatively common in the modulation of C/EBP gene expression and the murine and human C/EBPα genes have been shown to be auto-activated by different mechanisms. In the light of this finding, it is essential that autoregulation of C/EBPα genes from a wider range of different species be investigated in order to gauge the degree of commonality, or otherwise, that may exist. We report here studies that investigate the regulation of the Xenopus laevis C/EBPα gene (xC/EBPα). The –1131/+41 promoter region was capable of directing high levels of expression in both the human hepatoma Hep3B and the Xenopus kidney epithelial A6 cell lines, and was auto-activated by expression vectors specifying for xC/EBPα or xC/EBPβ. Deletion analysis showed that the –321/+41 sequence was sufficient for both the constitutive promoter activity and auto-activation and electrophoretic mobility shift assays identified the interaction of C/EBPs and Sp1 to this region. Although deletion of either the C/EBP or the Sp1 site drastically reduced the xC/EBPα promoter activity, multimers of only the C/EBP site could confer autoregulation to a heterologous SV40 promoter. These results indicate that, in contrast to the human promoter and in common with the murine gene, the xC/EBPα promoter was subject to direct autoregulation. In addition, we demonstrate a novel species-specific action of Sp1 in the regulation of C/EBPα expression, with the factor able to repress the murine promoter but activate the Xenopus gene.