8 resultados para browning
em National Center for Biotechnology Information - NCBI
Resumo:
Early in ontogeny, the secondary lymphoid organs become populated with numerous cells of mesodermal origin which forms both the lymphoid and stromal elements. The critical receptor/ligand interactions necessary for lymphoid organogenesis to occur are for the most part unknown. Although lymphotoxin-α (LTα) has been shown to be required for normal lymph node, Peyer’s patch, and splenic development, it is unclear if soluble LTα3, and/or cell-bound lymphotoxin-αβ (LTαβ) mediate these developmental events. Here we report that blocking LTαβ/lymphotoxin-β receptor (LTβR) interaction in vivo by generating mice which express a soluble LTβR–Fc fusion protein driven by the human cytomegalovirus promoter results in an array of anatomic abnormalities affecting both the spleen and Peyer’s patches, but not the lymph nodes. These results demonstrate that surface LTαβ ligand plays a critical role in normal lymphoid organ development.
Resumo:
HIV entry into human cells is mediated by CD4 acting in concert with one of several members of the chemokine receptor superfamily. The resistance to HIV infection observed in individuals with defective CCR5 alleles indicated that this particular chemokine receptor plays a crucial role in the initiation of in vivo HIV infection. Expression of human CD4 transgene does not render mice susceptible to HIV infection because of structural differences between human and mouse CCR5. To ascertain whether expression of human CD4 and CCR5 is sufficient to make murine T lymphocytes susceptible to HIV infection, the lck promoter was used to direct the T cell-specific expression of human CD4 and CCR5 in transgenic mice. Peripheral blood mononuclear cells and splenocytes isolated from these mice expressed human CD4 and CCR5 and were infectible with selected M-tropic HIV isolates. After in vivo inoculation, HIV-infected cells were detected by DNA PCR in the spleen and lymph nodes of these transgenic mice, but HIV could not be cultured from these cells. This indicated that although transgenic expression of human CD4 and CCR5 permitted entry of HIV into the mouse cells, significant HIV infection was prevented by other blocks to HIV replication present in mouse cells. In addition to providing in vivo verification for the important role of CCR5 in T lymphocyte HIV infection, these transgenic mice represent a new in vivo model for understanding HIV pathogenesis by delineating species-specific cellular factors required for productive in vivo HIV infection. These mice should also prove useful for the assessment of potential therapeutic and preventative modalities, particularly vaccines.
Resumo:
Long-term potentiation (LTP) is an increase in synaptic responsiveness thought to be involved in mammalian learning and memory. The localization (presynaptic and/or postsynaptic) of changes underlying LTP has been difficult to resolve with current electrophysiological techniques. Using a biochemical approach, we have addressed this issue and attempted to identify specific molecular mechanisms that may underlie LTP. We utilized a novel multiple-electrode stimulator to produce LTP in a substantial portion of the synapses in a hippocampal CA1 minislice and tested the effects of such stimulation on the presynaptic protein synapsin I. LTP-inducing stimulation produced a long-lasting 6-fold increase in the phosphorylation of synapsin I at its Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) sites without affecting synapsin I levels. This effect was fully blocked by either the N-methyl-d-aspartate receptor antagonist d(−)-2-amino-5-phosphonopentanoic acid (APV) or the CaM kinase II inhibitor KN-62. Our results indicate that LTP expression is accompanied by persistent changes in presynaptic phosphorylation, and specifically that presynaptic CaM kinase II activity and synapsin I phosphorylation may be involved in LTP expression.
Resumo:
Cultured cells of Eschscholtzia californica (Californian poppy) respond to a yeast elicitor preparation or Penicillium cyclopium spores with the production of benzophenanthridine alkaloids, which are potent phytoalexins. Confocal pH mapping with the probe carboxy-seminaphthorhodafluor-1-acetoxymethylester revealed characteristic shifts of the pH distribution in challenged cells: within a few minutes after elicitor contact a transient acidification of cytoplasmic and nuclear areas occurred in parallel with an increase of the vacuolar pH. The change of proton concentration in the vacuole and in the extravacuolar area showed a nearly constant relation, indicating an efflux of vacuolar protons into the cytosol. A 10-min treatment with 2 mm butyric or pivalic acid caused a transient acidification of the cytoplasm comparable to that observed after elicitor contact and also induced alkaloid biosynthesis. Experimental depletion of the vacuolar proton pool reversibly prevented both the elicitor-triggered pH shifts and the induction of alkaloid biosynthesis. pH shifts and induction of alkaloid biosynthesis showed a similar dependence on the elicitor concentration. Net efflux of K+, alkalinization of the outer medium, and browning of the cells were evoked only at higher elicitor concentrations. We suggest that transient acidification of the cytoplasm via efflux of vacuolar protons is both a necessary and sufficient step in the signal path toward biosynthesis of benzophenanthridine alkaloids in Californian poppy cells.
Resumo:
Equine rhinovirus 1 (ERhV1) is a respiratory pathogen of horses which has an uncertain taxonomic status. We have determined the nucleotide sequence of the ERhV1 genome except for a small region at the 5' end. The predicted polyprotein was encoded by 6741 nucleotides and possessed a typical picornavirus proteolytic cleavage pattern, including a leader polypeptide. The genomic structure and predicted amino acid sequence of ERhV1 were more similar to those of foot-and-mouth disease viruses (FMDVs), the only members of the aphthovirus genus, than to those of other picornaviruses. Features which were most similar to FMDV included a 16-amino acid 2A protein which was 87.5% identical in sequence of FMDV 2A, a leader (L) protein similar in size to FMDV Lab and the possibility of a truncated L protein similar in size to FMDV Lb, and a 3C protease which recognizes different cleavage sites. However, unlike FMDV, ERhV1 had only one copy of the 3B (VPg) polypeptide. The phylogenetic relationships of the ERhV1 sequence and nucleotide sequences of representative species of the five genera of the family Picornaviridae were examined. Nucleotide sequences coding for the complete polyprotein, the RNA polymerase, and VP1 were analyzed separately. The phylogenetic trees confirmed that ERhV1 was more closely related to FMDV than to other picornaviruses and suggested that ERhV1 may be a member, albeit very distant, of the aphthovirus genus.
Resumo:
We have synthesized a recombinant gene encoding a single-chain HLA-A2/beta 2-microglobulin (beta 2m) molecule by linking beta 2m through its carboxyl terminus via a short peptide spacer to HLA-A2 (A*0201). This gene has been expressed in the beta 2m-deficient colorectal tumor cell line DLD-1. Transfection of this cell with the single-chain construct was associated with conformationally correct cell surface expression of a class I molecule of appropriate molecular mass. The single-chain HLA class I molecule presented either exogenously added peptide or (after interferon-gamma treatment) endogenously processed antigen to an influenza A matrix-specific, HLA-A2-restricted cytotoxic T-lymphocyte line. The need for interferon gamma for the processing and presentation of endogenous antigen suggests that DLD-1 has an antigen-processing defect that can be up-regulated, a feature that may be found in other carcinomas. Our data indicate that single-chain HLA class I constructs can form functional class I molecules capable of presenting endogenously processed antigens. Such molecules should be of use for functional studies, as well as providing potential anticancer immunotherapeutic agents or vaccines.
Resumo:
The isozyme form of eukaryotic initiation factor 4F [eIF-(iso)4F] from wheat germ is composed of a p28 subunit that binds the 7-methylguanine cap of mRNA and a p86 subunit having unknown function. The p86 subunit was found to have limited sequence similarity to a kinesin-like protein encoded by the katA gene of Arabidopsis thaliana. Native wheat germ eIF-(iso)4F and bacterially expressed p86 subunit and p86-p28 complex bound to taxol-stabilized maize microtubules (MTs) in vitro. Binding saturation occurred at 1 mol of p86 per 5-6 mol of polymerized tubulin dimer, demonstrating a substoichiometric interaction of p86 with MTs. No evidence was found for a direct interaction of the p28 subunit with MTs. Unlike kinesin, cosedimentation of eIF-(iso)4F with MTs was neither reduced by MgATP nor enhanced by adenosine 5'-[gamma-imido]triphosphate. Both p86 subunit and p86-p28 complex induced the bundling of MTs in vitro. The p86 subunit was immunolocalized to the cytosol in root maize cells and existed in three forms: fine particles, coarse particles, and linear patches. Many coarse particles and linear patches were colocalized or closely associated with cortical MT bundles in interphase cells. The results indicate that the p86 subunit of eIF-(iso)4F is a MT-associated protein that may simultaneously link the translational machinery to the cytoskeleton and regulate MT disposition in plant cells.
Resumo:
Vascular cell adhesion molecule 1 (VCAM-1) represents a structurally and functionally distinct class of immunoglobulin superfamily molecules that bind leukocyte integrins and are involved in inflammatory and immune functions. X-ray crystallography defines the three-dimensional structure of the N-terminal two-domain fragment that participates in ligand binding. Residues in domain 1 important for ligand binding reside in the C-D loop, which projects markedly from one face of the molecule near the contact between domains 1 and 2. A cyclic peptide that mimics this loop inhibits binding of alpha 4 beta 1 integrin-bearing cells to VCAM-1. These data demonstrate how crystallographic structural information can be used to design a small molecule inhibitor of biological function.