34 resultados para bone morphogenetic protein 15

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological effects of type I serine/threonine kinase receptors and Smad proteins were examined using an adenovirus-based vector system. Constitutively active forms of bone morphogenetic protein (BMP) type I receptors (BMPR-IA and BMPR-IB; BMPR-I group) and those of activin receptor–like kinase (ALK)-1 and ALK-2 (ALK-1 group) induced alkaline phosphatase activity in C2C12 cells. Receptor-regulated Smads (R-Smads) that act in the BMP pathways, such as Smad1 and Smad5, also induced the alkaline phosphatase activity in C2C12 cells. BMP-6 dramatically enhanced alkaline phosphatase activity induced by Smad1 or Smad5, probably because of the nuclear translocation of R-Smads triggered by the ligand. Inhibitory Smads, i.e., Smad6 and Smad7, repressed the alkaline phosphatase activity induced by BMP-6 or the type I receptors. Chondrogenic differentiation of ATDC5 cells was induced by the receptors of the BMPR-I group but not by those of the ALK-1 group. However, kinase-inactive forms of the receptors of the ALK-1 and BMPR-I groups blocked chondrogenic differentiation. Although R-Smads failed to induce cartilage nodule formation, inhibitory Smads blocked it. Osteoblast differentiation induced by BMPs is thus mediated mainly via the Smad-signaling pathway, whereas chondrogenic differentiation may be transmitted by Smad-dependent and independent pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ewes from the Booroola strain of Australian Mérino sheep are characterized by high ovulation rate and litter size. This phenotype is due to the action of the FecBB allele of a major gene named FecB, as determined by statistical analysis of phenotypic data. By genetic analysis of 31 informative half-sib families from heterozygous sires, we showed that the FecB locus is situated in the region of ovine chromosome 6 corresponding to the human chromosome 4q22–23 that contains the bone morphogenetic protein receptor IB (BMPR-IB) gene encoding a member of the transforming growth factor-β (TGF-β) receptor family. A nonconservative substitution (Q249R) in the BMPR-IB coding sequence was found to be associated fully with the hyperprolificacy phenotype of Booroola ewes. In vitro, ovarian granulosa cells from FecBB/FecBB ewes were less responsive than granulosa cells from FecB+/FecB+ ewes to the inhibitory effect on steroidogenesis of GDF-5 and BMP-4, natural ligands of BMPR-IB. It is suggested that in FecBB/FecBB ewes, BMPR-IB would be inactivated partially, leading to an advanced differentiation of granulosa cells and an advanced maturation of ovulatory follicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The definitive mammalian kidney forms as the result of reciprocal interactions between the ureteric bud epithelium and metanephric mesenchyme. As osteogenic protein 1 (OP-1/bone morphogenetic protein 7), a member of the TGF-beta superfamily of proteins, is expressed predominantly in the kidney, we examined its involvement during metanephric induction and kidney differentiation. We found that OP-1 mRNA is expressed in the ureteric bud epithelium before mesenchymal condensation and is subsequently seen in the condensing mesenchyme and during glomerulogenesis. Mouse kidney metanephric rudiments cultured without ureteric bud epithelium failed to undergo mesenchymal condensation and further epithelialization, while exogenously added recombinant OP-1 was able to substitute for ureteric bud epithelium in restoring the induction of metanephric mesenchyme. This OP-1-induced nephrogenic mesenchyme differentiation follows a developmental pattern similar to that observed in the presence of the spinal cord, a metanephric inducer. Blocking OP-1 activity using either neutralizing antibodies or antisense oligonucleotides in mouse embryonic day 11.5 mesenchyme, cultured in the presence of metanephric inducers or in intact embryonic day 11.5 kidney rudiment, greatly reduced metanephric differentiation. These results demonstrate that OP-1 is required for metanephric mesenchyme differentiation and plays a functional role during kidney development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenetic protein 4 (BMP-4) induces ventral mesoderm but represses dorsal mesoderm formation in Xenopus embryos. We show that BMP-4 inhibits two signaling pathways regulating dorsal mesoderm formation, the induction of dorsal mesoderm (Spemann organizer) and the dorsalization of ventral mesoderm. Ectopic expression of BMP-4 RNA reduces goosecoid and forkhead-1 transcription in whole embryos and in activin-treated animal cap explants. Embryos and animal caps overexpressing BMP-4 transcribe high levels of genes expressed in ventral mesoderm (Xbra, Xwnt-8, Xpo, Mix.1, XMyoD). The Spemann organizer is ventralized in these embryos; abnormally high levels of Xwnt-8 mRNA and low levels of goosecoid mRNA are detected in the organizer. In addition, the organizer loses the ability to dorsalize neighboring ventral marginal zone to muscle. Overexpression of BMP-4 in ventral mesoderm inhibits its response to dorsalization signals. Ventral marginal zone explants ectopically expressing BMP-4 form less muscle when treated with soluble noggin protein or when juxtaposed to a normal Spemann organizer in comparison to control explants. Endogenous BMP-4 transcripts are downregulated in ventral marginal zone explants dorsalized by noggin, in contrast to untreated explants. Thus, while BMP-4 inhibits noggin protein activity, noggin downregulates BMP-4 expression by dorsalizing ventral marginal zone to muscle. Noggin and BMP-4 activities may control the lateral extent of dorsalization within the marginal zone. Competition between these two molecules may determine the final degree of muscle formation in the marginal zone, thus defining the border between dorsolateral and ventral mesoderm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily. Several members of this family have been shown to transduce their signals through binding to type I and type II serine-(threonine) kinase receptors. Here we report the cDNA cloning and characterization of a human type II receptor for BMPs (BMPR-II), which is distantly related to DAF-4, a BMP type II receptor from Caenorhabditis elegans. In transfected COS-1 cells, osteogenic protein (OP)-1/BMP-7, and less efficiently BMP-4, bound to BMPR-II. BMPR-II bound ligands only weakly alone, but the binding was facilitated by the presence of previously identified type I receptors for BMPs. Binding of OP-1/BMP-7 to BMPR-II was also observed in nontransfected cell lines. Moreover, a transcriptional activation signal was transduced by BMPR-II in the presence of type I receptors after stimulation by OP-1/BMP-7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cell adhesion molecule L1 regulates axonal guidance and fasciculation during development. We previously identified the regulatory region of the L1 gene and showed that it was sufficient for establishing the neural pattern of L1 expression in transgenic mice. In the present study, we characterize a DNA element within this region called the HPD that contains binding motifs for both homeodomain and Pax proteins and responds to signals from bone morphogenetic proteins (BMPs). An ATTA sequence within the core of the HPD was required for binding to the homeodomain protein Barx2 while a separate paired domain recognition motif was necessary for binding to Pax-6. In cellular transfection experiments, L1-luciferase reporter constructs containing the HPD were activated an average of 4-fold by Pax-6 in N2A cells and 5-fold by BMP-2 and BMP-4 in Ng108 cells. Both of these responses were eliminated on deletion of the HPD from L1 constructs. In transgenic mice, deletion of the HPD from an L1-lacZ reporter resulted in a loss of β-galactosidase expression in the telencephalon and mesencephalon. Collectively, our experiments indicate that the HPD regulates L1 expression in neural tissues via homeodomain and Pax proteins and is likely to be a target of BMP signaling during development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proper dorsal–ventral patterning in the developing central nervous system requires signals from both the dorsal and ventral portions of the neural tube. Data from multiple studies have demonstrated that bone morphogenetic proteins (BMPs) and Sonic hedgehog protein are secreted factors that regulate dorsal and ventral specification, respectively, within the caudal neural tube. In the developing rostral central nervous system Sonic hedgehog protein also participates in ventral regionalization; however, the roles of BMPs in the developing brain are less clear. We hypothesized that BMPs also play a role in dorsal specification of the vertebrate forebrain. To test our hypothesis we implanted beads soaked in recombinant BMP5 or BMP4 into the neural tube of the chicken forebrain. Experimental embryos showed a loss of the basal telencephalon that resulted in holoprosencephaly (a single cerebral hemisphere), cyclopia (a single midline eye), and loss of ventral midline structures. In situ hybridization using a panel of probes to genes expressed in the dorsal and ventral forebrain revealed the loss of ventral markers with the maintenance of dorsal markers. Furthermore, we found that the loss of the basal telencephalon was the result of excessive cell death and not a change in cell fates. These data provide evidence that BMP signaling participates in dorsal–ventral patterning of the developing brain in vivo, and disturbances in dorsal–ventral signaling result in specific malformations of the forebrain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the activity and function of mitogen-activated protein kinase (MAPK) during neural specification in Xenopus. Ectodermal MAPK activity increased between late blastula and midgastrula stages. At midgastrula, MAPK activity in both newly induced neural ectoderm and ectoderm overexpressing the anterior neural inducer noggin was 5-fold higher than in uninduced ectoderm. Overexpression of MAPK phosphatase-1 (MKP-1) in ectoderm inhibited MAPK activity and prevented neurectoderm-specific gene expression when the ectoderm was recombined with dorsal mesoderm or treated with fibroblast growth factor (FGF). Neurectoderm-specific gene expression was observed, however, in ectoderm overexpressing both noggin and MKP-1. To evaluate the role of MAPK in posterior regionalization, ectodermal isolates were treated with increasing concentrations of FGF and assayed for MAPK activity and neurectoderm-specific gene expression. Although induction of posterior neural ectoderm by FGF was accompanied by an elevation of MAPK activity, relative MAPK activity associated with posterior neural fate was no higher than that of ectoderm specified to adopt an anterior neural fate. Thus, increasingly posterior neural fates are not correlated with quantitative increases in MAPK activity. Because MAPK has been shown to down-regulate Smad1, MAPK may disrupt bone morphogenetic protein 4 (BMP-4) signaling during neural specification. Our results suggest that MAPK plays an essential role in the establishment of neural fate in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regulatory regions surrounding many genes may be large and difficult to study using standard transgenic approaches. Here we describe the use of bacterial artificial chromosome clones to rapidly survey hundreds of kilobases of DNA for potential regulatory sequences surrounding the mouse bone morphogenetic protein-5 (Bmp5) gene. Simple coinjection of large insert clones with lacZ reporter constructs recapitulates all of the sites of expression observed previously with numerous small constructs covering a large, complex regulatory region. The coinjection approach has made it possible to rapidly survey other regions of the Bmp5 gene for potential control elements, to confirm the location of several elements predicted from previous expression studies using regulatory mutations at the Bmp5 locus, to test whether Bmp5 control regions act similarly on endogenous and foreign promoters, and to show that Bmp5 control elements are capable of rescuing phenotypic effects of a Bmp5 deficiency. This rapid approach has identified new Bmp5 control regions responsible for controlling the development of specific anatomical structures in the vertebrate skeleton. A similar approach may be useful for studying complex control regions surrounding many other genes important in embryonic development and human disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells of the craniofacial skeleton are derived from a common mesenchymal progenitor. The regulatory factors that control their differentiation into various cell lineages are unknown. To investigate the biological function of dentin matrix protein 1 (DMP1), an extracellular matrix gene involved in calcified tissue formation, stable transgenic cell lines and adenovirally infected cells overexpressing DMP1 were generated. The findings in this paper demonstrate that overexpression of DMP1 in pluripotent and mesenchyme-derived cells such as C3H10T1/2, MC3T3-E1, and RPC-C2A can induce these cells to differentiate and form functional odontoblast-like cells. Functional differentiation of odontoblasts requires unique sets of genes being turned on and off in a growth- and differentiation-specific manner. The genes studied include transcription factors like core binding factor 1 (Cbfa1), bone morphogenetic protein 2 (BMP2), and BMP4; early markers for extracellular matrix deposition like alkaline phosphatase (ALP), osteopontin, osteonectin, and osteocalcin; and late markers like DMP2 and dentin sialoprotein (DSP) that are expressed by terminally differentiated odontoblasts and are responsible for the formation of tissue-specific dentin matrix. However, this differentiation pathway was limited to mesenchyme-derived cells only. Other cell lines tested by the adenoviral expression system failed to express odontoblast-phenotypic specific genes. An in vitro mineralized nodule formation assay demonstrated that overexpressed cells could differentiate and form a mineralized matrix. Furthermore, we also demonstrate that phosphorylation of Cbfa1 (osteoblast-specific transcription factor) was not required for the expression of odontoblast-specific genes, indicating the involvement of other unidentified odontoblast-specific transcription factors or coactivators. Cell lines that differentiate into odontoblast-like cells are useful tools for studying the mechanism involved in the terminal differentiation process of these postmitotic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degradable matrices containing expression plasmid DNA [gene-activated matrices (GAMs)] were implanted into segmental gaps created in the adult rat femur. Implantation of GAMs containing beta-galactosidase or luciferase plasmids led to DNA uptake and functional enzyme expression by repair cells (granulation tissue) growing into the gap. Implantation of a GAM containing either a bone morphogenetic protein-4 plasmid or a plasmid coding for a fragment of parathyroid hormone (amino acids 1-34) resulted in a biological response of new bone filling the gap. Finally, implantation of a two-plasmid GAM encoding bone morphogenetic protein-4 and the parathyroid hormone fragment, which act synergistically in vitro, caused new bone to form faster than with either factor alone. These studies demonstrate for the first time that repair cells (fibroblasts) in bone can be genetically manipulated in vivo. While serving as a useful tool to study the biology of repair fibroblasts and the wound healing response, the GAM technology may also have wide therapeutic utility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone morphogenic protein-1 (BMP-1) was originally identified as one of several BMPs that induced new bone formation when implanted into ectopic sites in rodents. BMP-1, however, differed from other BMPs in that it its structure was not similar to transforming growth factor beta. Instead, it had a large domain homologous to a metalloendopeptidase isolated from crayfish, an epidermal growth-factor-like domain, and three regions of internal sequence homology referred to as CUB domains. Therefore, BMP-1 was a member of the "astacin families" of zinc-requiring endopeptidases. Many astacins have been shown to play critical roles in embryonic hatching, dorsal/ventral patterning, and early developmental decisions. Here, we have obtained amino acid sequences and isolated cDNA clones for procollagen C-proteinase (EC 3.4.24.19), an enzyme that is essential for the processing of procollagens to fibrillar collagens. The results demonstrate that procollagen C-proteinase is identical to BMP-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the three-dimensional structure of osteogenic protein 1 (OP-1, also known as bone morphogenetic protein 7) to 2.8-A resolution. OP-1 is a member of the transforming growth factor beta (TGF-beta) superfamily of proteins and is able to induce new bone formation in vivo. Members of this superfamily share sequence similarity in their C-terminal regions and are implicated in embryonic development and adult tissue repair. Our crystal structure makes possible the structural comparison between two members of the TGF-beta superfamily. We find that although there is limited sequence identity between OP-1 and TGF-beta 2, they share a common polypeptide fold. These results establish a basis for proposing the OP-1/TGF-beta 2 fold as the primary structural motif for the TGF-beta superfamily as a whole. Detailed comparison of the OP-1 and TGF-beta 2 structures has revealed striking differences that provide insights into how these growth factors interact with their receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CBP is a transcriptional coactivator required by many transcription factors for transactivation. Rubinstein–Taybi syndrome, which is an autosomal dominant syndrome characterized by abnormal pattern formation, has been shown to be associated with mutations in the Cbp gene. Furthermore, Drosophila CBP is required in hedgehog signaling for the expression of decapentapleigic, the Drosophila homologue of bone morphogenetic protein. However, no direct evidence exists to indicate that loss of one copy of the mammalian Cbp gene affects pattern formation. Here, we show that various abnormalities occur at high frequency in the skeletal system of heterozygous Cbp-deficient mice resulting from a C57BL/6-CBA × BALB/c cross. In support of a conserved signaling pathway for pattern formation in insects and mammals, the expression of Bmp7 was found to be reduced in the heterozygous mutants. The frequency of the different abnormalities was significantly lower in a C57BL/6-CBA background, suggesting that the genetic background is an important determinant of the variability and severity of the anomalies seen in Rubinstein–Taybi syndrome patients.