70 resultados para biosilicification, silicatein, biomaterials, protein immobilization, cell culture, self-assembly
em National Center for Biotechnology Information - NCBI
Resumo:
Insulin was immobilized on a surface-hydrolyzed poly(methyl methacrylate) film. Chinese hamster ovary cells overexpressing human insulin receptors were cultured on the film in the absence of serum or soluble proteins. Small amounts of immobilized insulin (1-10% of the required amount of free insulin) were sufficient to stimulate cell proliferation. In addition, the maximal mitogenic effect of immobilized insulin was greater than that of free insulin. Immobilized insulin activated the insulin receptor and downstream signaling proteins, and this activation persisted for longer periods than that obtained with free insulin, probably explaining the greater mitogenic effect of the immobilized insulin. Finally the immobilized-insulin film was usable repeatedly without marked loss of activity.
Resumo:
Fibronectin (FN) forms the primitive fibrillar matrix in both embryos and healing wounds. To study the matrix in living cell cultures, we have constructed a cell line that secretes FN molecules chimeric with green fluorescent protein. These FN–green fluorescent protein molecules were assembled into a typical matrix that was easily visualized by fluorescence over periods of several hours. FN fibrils remained mostly straight, and they were seen to extend and contract to accommodate movements of the cells, indicating that they are elastic. When fibrils were broken or detached from cells, they contracted to less than one-fourth of their extended length, demonstrating that they are highly stretched in the living culture. Previous work from other laboratories has suggested that cryptic sites for FN assembly may be exposed by tension on FN. Our results show directly that FN matrix fibrils are not only under tension but are also highly stretched. This stretched state of FN is an obvious candidate for exposing the cryptic assembly sites.
Resumo:
Recent measurements of sedimentation equilibrium and sedimentation velocity have shown that the bacterial cell division protein FtsZ self-associates to form indefinitely long rod-like linear aggregates in the presence of GDP and Mg2+. In the present study, the newly developed technique of non-ideal tracer sedimentation equilibrium was used to measure the effect of high concentrations—up to 150 g/liter—of each of two inert “crowder” proteins, cyanmethemoglobin or BSA, on the thermodynamic activity and state of association of dilute FtsZ under conditions inhibiting (−Mg2+) and promoting (+Mg2+) FtsZ self-association. Analysis of equilibrium gradients of both FtsZ and crowder proteins indicates that, under the conditions of the present experiment, FtsZ interacts with each of the two crowder proteins essentially entirely via steric repulsion, which may be accounted for quantitatively by a simple model in which hemoglobin, albumin, and monomeric FtsZ are modeled as effective spherical hard particles, and each oligomeric species of FtsZ is modeled as an effective hard spherocylinder. The functional dependence of the sedimentation of FtsZ on the concentrations of FtsZ and either crowder indicates that, in the presence of high concentrations of crowder, both the weight-average degree of FtsZ self-association and the range of FtsZ oligomer sizes present in significant abundance are increased substantially.
Resumo:
The effects of ischemia on the maturation of secretory proteins are not well understood. Among several events that occur during ischemia-reperfusion are a rapid and extensive decrease in ATP levels and an alteration of cellular oxidative state. Since the normal folding and assembly of secretory proteins are mediated by endoplasmic reticulum (ER) molecular chaperones, the function of which depends on ATP and maintenance of an appropriate redox environment, ischemia might be expected to perturb folding of secretory proteins. In this study, whole animal and cultured cell models for the epithelial ischemic state were used to examine this possibility. After acute kidney ischemia, marked increases in the mRNA levels of the ER chaperones glucose-regulated protein (grp)78/immunoglobulin-binding protein (BiP), grp94, and ER protein (ERp)72 were noted. Likewise, when cellular ATP was depleted to less than 10% of control with antimycin A, mRNA levels of BiP, ERp72, and grp94 were increased in kidney and thyroid epithelial cell culture models. Since the signal for the up-regulation of these stress proteins is believed to be the accumulation of misfolded/misassembled secretory proteins in the ER, their induction after ischemia in vivo and antimycin treatment of cultured cells suggests that maturation of secretory proteins in the ER lumen might indeed be perturbed. To analyze the effects of antimycin A on the maturation of secretory proteins, we studied the fate of thyroglobulin (Tg), a large oligomeric secretory glycoprotein, the folding and assembly of which seems to require a variety of ER chaperones. Treatment of cultured thyroid epithelial cells with antimycin A greatly inhibited ( > 90%) the secretion of Tg. Sucrose density gradient analysis revealed that in antimycin A-treated cells Tg associates into large macromolecular complexes which, by immunofluorescence, appeared to localize to the ER. Furthermore, coimmunoprecipitation studies after antimycin A treatment demonstrated that Tg stably associates with BiP, grp94, and ERp72. Together, our results suggest that a key cellular lesion in ischemia is the misfolding of secretory proteins as they transit the ER, and this leads not only to increased expression of ER chaperones but also to their stable association with and the subsequent retention of at least some misfolded secretory proteins.
Resumo:
Trisomy 21 (Down syndrome) is associated with a high incidence of Alzheimer disease and with deficits in cholinergic function in humans. We used the trisomy 16 (Ts16) mouse model for Down syndrome to identify the cellular basis for the cholinergic dysfunction. Cholinergic neurons and cerebral cortical astroglia, obtained separately from Ts16 mouse fetuses and their euploid littermates, were cultured in various combinations. Choline acetyltransferase activity and cholinergic neuron number were both depressed in cultures in which both neurons and glia were derived from Ts16 fetuses. Cholinergic function of normal neurons was significantly down-regulated by coculture with Ts16 glia. Conversely, neurons from Ts16 animals could express normal cholinergic function when grown with normal glia. These observations indicate that astroglia may contribute strongly to the abnormal cholinergic function in the mouse Ts16 model for Down syndrome. The Ts16 glia could lack a cholinergic supporting factor present in normal glia or contain a factor that down-regulates cholinergic function.
Resumo:
To begin to understand mechanistic differences in endocytosis in neurons and nonneuronal cells, we have compared the biochemical properties of the ubiquitously expressed dynamin-II isoform with those of neuron-specific dynamin-I. Like dynamin-I, dynamin-II is specifically localized to and highly concentrated in coated pits on the plasma membrane and can assemble in vitro into rings and helical arrays. As expected, the two closely related isoforms share a similar mechanism for GTP hydrolysis: both are stimulated in vitro by self-assembly and by interaction with microtubules or the SH3 domain-containing protein, grb2. Deletion of the C-terminal proline/arginine-rich domain from either isoform abrogates self-assembly and assembly-dependent increases in GTP hydrolysis. However, dynamin-II exhibits a ∼threefold higher rate of intrinsic GTP hydrolysis and higher affinity for GTP than dynamin-I. Strikingly, the stimulated GTPase activity of dynamin-II can be >40-fold higher than dynamin-I, due principally to its greater propensity for self-assembly and the increased resistance of assembled dynamin-II to GTP-triggered disassembly. These results are consistent with the hypothesis that self-assembly is a major regulator of dynamin GTPase activity and that the intrinsic rate of GTP hydrolysis reflects a dynamic, GTP-dependent equilibrium of assembly and disassembly.
Resumo:
Synapses of the hippocampal mossy fiber pathway exhibit several characteristic features, including a unique form of long-term potentiation that does not require activation of the N-methyl-D-aspartate receptor by glutamate, a complex postsynaptic architecture, and sprouting in response to seizures. However, these connections have proven difficult to study in hippocampal slices because of their relative paucity (<0.4%) compared to commissural-collateral synapses. To overcome this problem, we have developed a novel dissociated cell culture system in which we have enriched mossy fiber synapses by increasing the ratio of granule-to-pyramidal cells. As in vivo, mossy fiber connections are composed of large dynorphin A-positive varicosities contacting complex spines (but without a restricted localization). The elementary synaptic connections are glutamatergic, inhibited by dynorphin A, and exhibit N-methyl-D-aspartate-independent long-term potentiation. Thus, the simplicity and experimental accessibility of this enriched in vitro mossy fiber pathway provides a new perspective for studying nonassociative plasticity in the mammalian central nervous system.
Resumo:
Orally administered antigens induce a state of immunologic hyporesponsiveness termed oral tolerance. Different mechanisms are involved in mediating oral tolerance depending on the dose fed. Low doses of antigen generate cytokine-secreting regulatory cells, whereas high doses induce anergy or deletion. We used mice transgenic for a T-cell receptor (TCR) derived from an encephalitogenic T-cell clone specific for the acetylated N-terminal peptide of myelin basic protein (MBP) Ac-1-11 plus I-Au to test whether a regulatory T cell could be generated from the same precursor cell as that of an encephalitogenic Th1 cell and whether the induction was dose dependent. The MBP TCR transgenic mice primarily have T cells of a precursor phenotype that produce interleukin 2 (IL-2) with little interferon gamma (IFN-gamma), IL-4, or transforming growth factor beta (TGF-beta). We fed transgenic animals a low-dose (1 mg x 5) or high-dose (25 mg x 1) regimen of mouse MBP and without further immunization spleen cells were tested for cytokine production. Low-dose feeding induced prominent secretion of IL-4, IL-10, and TGF-beta, whereas minimal secretion of these cytokines was observed with high-dose feeding. Little or no change was seen in proliferation or IL-2/IFN-gamma secretion in fed animals irrespective of the dose. To demonstrate in vivo functional activity of the cytokine-secreting cells generated by oral antigen, spleen cells from low-dose-fed animals were adoptively transferred into naive (PLJ x SJL)F1 mice that were then immunized for the development of experimental autoimmune encephalomyelitis (EAE). Marked suppression of EAE was observed when T cells were transferred from MBP-fed transgenic animals but not from animals that were not fed. In contrast to oral tolerization, s.c. immunization of transgenic animals with MBP in complete Freund's adjuvant induced IFN-gamma-secreting Th1 cells in vitro and experimental encephalomyelitis in vivo. Despite the large number of cells reactive to MBP in the transgenic animals, EAE was also suppressed by low-dose feeding of MBP prior to immunization. These results demonstrate that MBP-specific T cells can differentiate in vivo into encephalitogenic or regulatory T cells depending upon the context by which they are exposed to antigen.
Resumo:
The human hepatitis B virus (HBV) HBx protein is a small transcriptional activator that is essential for virus infection. HBx is thought to be involved in viral hepatocarcinogenesis because it promotes tumorigenesis in transgenic mice. HBx activates the RAS-RAF-mitogen-activated protein (MAP) kinase signaling cascade, through which it activates transcription factors AP-1 and NF-kappa B, and stimulates cell DNA synthesis. We show that HBx stimulates cell cycle progression, shortening the emergence of cells from quiescence (G0) and entry into S phase by at least 12 h, and accelerating transit through checkpoint controls at G0/G1 and G2/M. Compared with serum stimulation, HBx was found to strongly increase the rate and level of activation of the cyclin-dependent kinases CDK2 and CDC2, and their respective active association with cyclins E and A or cyclin B. HBx is also shown to override or greatly reduce serum dependence for cell cycle activation. Both HBx and serum were found to require activation of RAS to stimulate cell cycling, but only HBx could shorten checkpoint intervals. HBx therefore stimulates cell proliferation by activating RAS and a second unknown effector, which may be related to its reported ability to induce prolonged activation of JUN or to interact with cellular p53 protein. These data suggest a molecular mechanism by which HBx likely contributes to viral carcinogenesis. By deregulating checkpoint controls, HBx could participate in the selection of cells that are genetically unstable, some of which would accumulate unrepaired transforming mutations.
Resumo:
Five structurally related thiophene and furane analogues of the oxathiin carboxanilide derivative NSC 615985 (UC84) (designated UC10, UC68, UC81, UC42, and UC16) were identified as potent inhibitors of HIV-1 replication in cell culture and HIV-1 reverse transcriptase activity. These compounds were markedly active against a series of mutant HIV-1 strains, containing the Leu-100-->Ile, Val-106-->Ala, Glu-138-->Lys, or Tyr-181-->Cys mutations in their reverse transcriptase. However, the thiocarboxanilide derivatives selected for mutations at amino acid positions 100 (Leu-->Ile), 101 (Lys-->Ile/Glu), 103 (Lys-->Thr/Asp) and 141 (Gly-->Glu) in the HIV-1 reverse transcriptase. The compounds completely suppressed HIV-1 replication and prevented the emergence of resistant virus strains when used at 1.3-6.6 microM--that is, 10- to 25-fold lower than the concentration required for nevirapine and bis(heteroaryl)piperazine (BHAP) U90152 to do so. If UC42 was combined with the [2',5'-bis-O-(tert-butyldimethylsilyl)-3'-spiro-5"-(4"-amino-1",2"- oxathiole-2",2"-dioxide)]-beta-D-pentofuranosyl (TSAO) derivative of N3-methylthymine (TSAO-m3T), virus breakthrough could be prevented for a much longer time, and at much lower concentrations, than if the compounds were used individually. Virus breakthrough could be suppressed for even longer, and at lower drug concentrations, if BHAP was added to the combination of UC42 with TSAO-m3T, which points to the feasibility of two- or three-drug combinations in preventing virus breakthrough and resistance development.
Resumo:
The cell-mediated assembly of fibronectin (Fn) into fibrillar matrices is a complex multistep process that is incompletely understood because of the chemical complexity of the extracellular matrix and a lack of experimental control over molecular interactions and dynamic events. We have identified conditions under which Fn assembles into extended fibrillar networks after adsorption to a dipalmitoyl phosphatidylcholine (DPPC) monolayer in contact with physiological buffer. We propose a sequential model for the Fn assembly pathway, which involves the orientation of Fn underneath the lipid monolayer by insertion into the liquid expanded (LE) phase of DPPC. Attractive interactions between these surface-anchored proteins and the liquid condensed (LC) domains leads to Fn enrichment at domain edges. Spontaneous self-assembly into fibrillar networks, however, occurs only after expansion of the DPPC monolayer from the LC phase though the LC/LE phase coexistence. Upon monolayer expansion, the domain boundaries move apart while attractive interactions among Fn molecules and between Fn and domain edges produce a tensile force on the proteins that initiates fibril assembly. The resulting fibrils have been characterized in situ by using fluorescence and light-scattering microscopy. We have found striking similarities between fibrils produced under DPPC monolayers and those found on cellular surfaces, including their assembly pathways.
Resumo:
In many biological membranes, the major lipids are “non-bilayer lipids,” which in purified form cannot be arranged in a lamellar structure. The structural and functional roles of these lipids are poorly understood. This work demonstrates that the in vitro association of the two main components of a membrane, the non-bilayer lipid monogalactosyldiacylglycerol (MGDG) and the chlorophyll-a/b light-harvesting antenna protein of photosystem II (LHCII) of pea thylakoids, leads to the formation of large, ordered lamellar structures: (i) thin-section electron microscopy and circular dichroism spectroscopy reveal that the addition of MGDG induces the transformation of isolated, disordered macroaggregates of LHCII into stacked lamellar aggregates with a long-range chiral order of the complexes; (ii) small-angle x-ray scattering discloses that LHCII perturbs the structure of the pure lipid and destroys the inverted hexagonal phase; and (iii) an analysis of electron micrographs of negatively stained 2D crystals indicates that in MGDG-LHCII the complexes are found in an ordered macroarray. It is proposed that, by limiting the space available for MGDG in the macroaggregate, LHCII inhibits formation of the inverted hexagonal phase of lipids; in thylakoids, a spatial limitation is likely to be imposed by the high concentration of membrane-associated proteins.
Resumo:
The E-26 transforming specific (ETS)-related gene, TEL, also known as ETV6, encodes a strong transcription repressor that is rearranged in several recurring chromosomal rearrangements associated with leukemia and congenital fibrosarcoma. TEL is a nuclear phosphoprotein that is widely expressed in all normal tissues. TEL contains a DNA-binding domain at the C terminus and a helix–loop–helix domain (also called a pointed domain) at the N terminus. The pointed domain is necessary for homotypic dimerization and for interaction with the ubiquitin-conjugating enzyme UBC9. Here we show that the interaction with UBC9 leads to modification of TEL by conjugating it to SUMO-1. The SUMO-1-modified TEL localizes to cell-cycle-specific nuclear speckles that we named TEL bodies. We also show that the leukemia-associated fusion protein TEL/AML1 is modified by SUMO-1 and found in the TEL bodies, in a pattern quite different from what we observe and report for AML1. Therefore, SUMO-1 modification of TEL could be a critical signal necessary for normal functioning of the protein. In addition, the modification by SUMO-1 of TEL/AML1 could lead to abnormal localization of the fusion protein, which could have consequences that include contribution to neoplastic transformation.
Resumo:
The microtubule-associated protein τ is a family of six isoforms that becomes abnormally hyperphosphorylated and accumulates in the form of paired helical filaments (PHF) in the brains of patients with Alzheimer's disease (AD) and patients with several other tauopathies. Here, we show that the abnormally hyperphosphorylated τ from AD brain cytosol (AD P-τ) self-aggregates into PHF-like structures on incubation at pH 6.9 under reducing conditions at 35°C during 90 min. In vitro dephosphorylation, but not deglycosylation, of AD P-τ inhibits its self-association into PHF. Furthermore, hyperphosphorylation induces self-assembly of each of the six τ isoforms into tangles of PHF and straight filaments, and the microtubule binding domains/repeats region in the absence of the rest of the molecule can also self-assemble into PHF. Thus, it appears that τ self-assembles by association of the microtubule binding domains/repeats and that the abnormal hyperphosphorylation promotes the self-assembly of τ into tangles of PHF and straight filaments by neutralizing the inhibitory basic charges of the flanking regions.