4 resultados para biological control

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In North America there are two generally recognized pathotypes (pathotypes 1 and 2) of the fungus Entomophaga grylli which show host-preferential infection of grasshopper subfamilies. Pathotype 3, discovered in Australia, has a broader grasshopper host range and was considered to be a good biocontrol agent. Between 1989 and 1991 pathotype 3 was introduced at two field sites in North Dakota. Since resting spores are morphologically indistinguishable among pathotypes, we used pathotype-specific DNA probes to confirm pathotype identification in E. grylli-infected grasshoppers collected at the release sites in 1992, 1993, and 1994. In 1992, up to 23% of E. grylli-infected grasshoppers of the subfamilies Melanoplinae, Oedipodinae, and Gomphocerinae were infected by pathotype 3, with no infections > 1 km from the release sites. In 1993, pathotype 3 infections declined to 1.7%. In 1994 grasshopper populations were low and no pathotype 3 infections were found. The frequency of pathotype 3 infection has declined to levels where its long-term survival in North America is questionable. Analyses of biocontrol releases are critical to evaluating the environmental risks associated with these ecological manipulations, and molecular probes are powerful tools for monitoring biocontrol releases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas fluorescens Pf-5, a rhizosphere-inhabiting bacterium that suppresses several soilborne pathogens of plants, produces the antibiotics pyrrolnitrin, pyoluteorin, and 2,4-diacetylphloroglucinol. A gene necessary for pyrrolnitrin production by Pf-5 was identified as rpoS, which encodes the stationary-phase sigma factor sigma s. Several pleiotropic effects of an rpoS mutation in Escherichia coli also were observed in an RpoS- mutant of Pf-5. These included sensitivities of stationary-phase cells to stresses imposed by hydrogen peroxide or high salt concentration. A plasmid containing the cloned wild-type rpoS gene restored pyrrolnitrin production and stress tolerance to the RpoS- mutant of Pf-5. The RpoS- mutant overproduced pyoluteorin and 2,4-diacetyl-phloroglucinol, two antibiotics that inhibit growth of the phytopathogenic fungus Pythium ultimum, and was superior to the wild type in suppression of seedling damping-off of cucumber caused by Pythium ultimum. When inoculated onto cucumber seed at high cell densities, the RpoS- mutant did not survive as well as the wild-type strain on surfaces of developing seedlings. Other stationary-phase-specific phenotypes of Pf-5, such as the production of cyanide and extracellular protease(s) were expressed by the RpoS- mutant, suggesting that sigma s is only one of the sigma factors required for the transcription of genes in stationary-phase cells of P. fluorescens. These results indicate that a sigma factor encoded by rpoS influences antibiotic production, biological control activity, and survival of P. fluorescens on plant surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SoxR is a transcription activator governing a cellular response to superoxide and nitric oxide in Escherichia coli. SoxR protein is a homodimer, and each monomer has a redox-active [2Fe–2S] cluster. Oxidation and reduction of the [2Fe–2S] clusters can reversibly activate and inactivate SoxR transcriptional activity. Here, we use electron paramagnetic resonance spectroscopy to follow the redox-switching process of SoxR protein in vivo. SoxR [2Fe–2S] clusters were in the fully reduced state during normal aerobic growth, but were completely oxidized after only 2-min aerobic exposure of the cells to superoxide-generating agents such as paraquat. The oxidized SoxR [2Fe–2S] clusters were rapidly re-reduced in vivo once the oxidative stress was removed. The in vivo kinetics of SoxR [2Fe–2S] cluster oxidation and reduction exactly paralleled the increase and decrease of transcription of soxS, the target gene for SoxR. The kinetic analysis also revealed that an oxidative stress-linked decrease in soxS mRNA stability contributes to the rapid attainment of a new steady state after SoxR activation. Such a redox stress-related change in soxS mRNA stability may represent a new level of biological control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent predictions of growth in human populations and food supply suggest that there will be a need to substantially increase food production in the near future. One possible approach to meeting this demand, at least in part, is the control of pests and diseases, which currently cause a 30–40% loss in available crop production. In recent years, strategies for controlling pests and diseases have tended to focus on short-term, single-technology interventions, particularly chemical pesticides. This model frequently applies even where so-called integrated pest management strategies are used because in reality, these often are dominated by single technologies (e.g., biocontrol, host plant resistance, or biopesticides) that are used as replacements for chemicals. Very little attention is given to the interaction or compatibility of the different technologies used. Unfortunately, evidence suggests that such approaches rarely yield satisfactory results and are unlikely to provide sustainable pest control solutions for the future. Drawing on two case histories, this paper demonstrates that by increasing our basic understanding of how individual pest control technologies act and interact, new opportunities for improving pest control can be revealed. This approach stresses the need to break away from the existing single-technology, pesticide-dominated paradigm and to adopt a more ecological approach built around a fundamental understanding of population biology at the local farm level and the true integration of renewable technologies such as host plant resistance and natural biological control, which are available to even the most resource-poor farmers.