30 resultados para beta adrenergic stimulation

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of cAMP subcellular compartmentation in the progress of beta-adrenergic stimulation of cardiac L-type calcium current (ICa) was investigated by using a method based on the use of whole-cell patch-clamp recording and a double capillary for extracellular microperfusion. Frog ventricular cells were sealed at both ends to two patch-clamp pipettes and positioned approximately halfway between the mouths of two capillaries that were separated by a 5-micron thin wall. ICa could be inhibited in one half or the other by omitting Ca2+ from one solution or the other. Exposing half of the cell to a saturating concentration of isoprenaline (ISO, 1 microM) produced a nonmaximal increase in ICa (347 +/- 70%; n = 4) since a subsequent application of ISO to the other part induced an additional effect of nearly similar amplitude to reach a 673 +/- 130% increase. However, half-cell exposure to forskolin (FSK, 30 microM) induced a maximal stimulation of ICa (561 +/- 55%; n = 4). This effect was not the result of adenylyl cyclase activation due to FSK diffusion in the nonexposed part of the cell. To determine the distant effects of ISO and FSK on ICa, the drugs were applied in a zero-Ca solution. Adding Ca2+ to the drug-containing solutions allowed us to record the local effect of the drugs. Dose-response curves for the local and distant effects of ISO and FSK on ICa were used as an index of cAMP concentration changes near the sarcolemma. We found that ISO induced a 40-fold, but FSK induced only a 4-fold, higher cAMP concentration close to the Ca2+ channels, in the part of the cell exposed to the drugs, than it did in the rest of the cell. cAMP compartmentation was greatly reduced after inhibition of phosphodiesterase activity with 3-isobutyl-methylxanthine, suggesting the colocalization of enzymes involved in the cAMP cascade. We conclude that beta-adrenergic receptors are functionally coupled to nearby Ca2+ channels via local elevations of cAMP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na+-Ca2+ exchanger and Ca2+ channel are two major sarcolemmal Ca2+-transporting proteins of cardiac myocytes. Although the Ca2+ channel is effectively regulated by protein kinase A-dependent phosphorylation, no enzymatic regulation of the exchanger protein has been identified as yet. Here we report that in frog ventricular myocytes, isoproterenol down-regulates the Na+-Ca2+ exchanger, independent of intracellular Ca2+ and membrane potential, by activation of the beta-receptor/adenylate-cyclase/cAMP-dependent cascade, resulting in suppression of transmembrane Ca2+ transport via the exchanger and providing for the well-documented contracture-suppressant effect of the hormone on frog heart. The beta-blocker propranolol blocks the isoproterenol effect, whereas forskolin, cAMP, and theophylline mimic it. In the frog heart where contractile Ca2+ is transported primarily by the Na+-Ca2+ exchanger, the beta-agonists' simultaneous enhancement of Ca2+ current, ICa, and suppression of Na+-Ca2+ exchanger current, INa-Ca would enable the myocyte to develop force rapidly at the onset of depolarization (enhancement of ICa) and to decrease Ca2+ influx (suppression of INa-Ca) later in the action potential. This unique adrenergically induced shift in the Ca2+ influx pathways may have evolved in response to paucity of the sarcoplasmic reticulum Ca2+-ATPase/phospholamban complex and absence of significant intracellular Ca2+ release pools in the frog heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase (betaARK) is the prototypical member of the family of cytosolic kinases that phosphorylate guanine nucleotide binding-protein-coupled receptors and thereby trigger uncoupling between receptors and guanine nucleotide binding proteins. Herein we show that this kinase is subject to phosphorylation and regulation by protein kinase C (PKC). In cell lines stably expressing alpha1B- adrenergic receptors, activation of these receptors by epinephrine resulted in an activation of cytosolic betaARK. Similar data were obtained in 293 cells transiently coexpressing alpha1B- adrenergic receptors and betaARK-1. Direct activation of PKC with phorbol esters in these cells caused not only an activation of cytosolic betaARK-1 but also a translocation of betaARK immunoreactivity from the cytosol to the membrane fraction. A PKC preparation purified from rat brain phospborylated purified recombinant betaARK-1 to a stoichiometry of 0.86 phosphate per betaARK-1. This phosphorylation resulted in an increased activity of betaARK-1 when membrane-bound rhodopsin served as its substrate but in no increase of its activity toward a soluble peptide substrate. The site of phosphorylation was mapped to the C terminus of betaARK-1. We conclude that PKC activates betaARK by enhancing its translocation to the plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At least three distinct beta-adrenergic receptor (beta-AR) subtypes exist in mammals. These receptors modulate a wide variety of processes, from development and behavior, to cardiac function, metabolism, and smooth muscle tone. To understand the roles that individual beta-AR subtypes play in these processes, we have used the technique of gene targeting to create homozygous beta 1-AR null mutants (beta 1-AR -/-) in mice. The majority of beta 1-AR -/- mice die prenatally, and the penetrance of lethality shows strain dependence. Beta l-AR -/- mice that do survive to adulthood appear normal, but lack the chronotropic and inotropic responses seen in wild-type mice when beta-AR agonists such as isoproterenol are administered. Moreover, this lack of responsiveness is accompanied by markedly reduced stimulation of adenylate cyclase in cardiac membranes from beta 1-AR -/- mice. These findings occur despite persistent cardiac beta 2-AR expression, demonstrating the importance of beta 1-ARs for proper mouse development and cardiac function, while highlighting functional differences between beta-AR subtypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stimulatory guanine nucleotide binding protein (Gs)-coupled receptors activated by luteinizing hormone, vasopressin, and the catecholamine isoproterenol (luteinizing hormone receptor, type 2 vasopressin receptor, and types 1 and 2 beta-adrenergic receptors) and the Gi-coupled M2 muscarinic receptor (M2R) were expressed transiently in COS cells, alone and in combination with Gbeta gamma dimers, their corresponding Galphas (Galpha(s), or Galpha(i3)) and either Galpha(q) or Galpha(16). Phospholipase C (PLC) activity, assessed by inositol phosphate production from preincorporated myo[3H]inositol, was then determined to gain insight into differential coupling preferences among receptors and G proteins. The following were observed: (i) All receptors tested were able to stimulate PLC activity in response to agonist occupation. The effect of the M2R was pertussis toxin sensitive. (ii) While, as expected, expression of Galpha(q) facilitated an agonist-induced activation of PLC that varied widely from receptor to receptor (400% with type 2 vasopressin receptor and only 30% with M2R), expression of Galpha(16) facilitated about equally well the activation of PLC by any of the tested receptors and thus showed little if any discrimination for one receptor over another. (iii) Gbeta gamma elevated basal (agonist independent) PLC activity between 2- and 4-fold, confirming the proven ability of Gbeta gamma to stimulate PLCbeta. (iv) Activation of expressed receptors by their respective ligands in cells coexpressing excess Gbeta gamma elicited agonist stimulated PLC activities, which, in the case of the M2R, was not blocked by pertussis toxin (PTX), suggesting mediation by a PTX-insensitive PLC-stimulating Galpha subunit, presumably, but not necessarily, of the Gq family. (v) The effects of Gbeta gamma and the PTX-insensitive Galpha elicited by M2R were synergistic, suggesting the possibility that one or more forms of PLC are under conditional or dual regulation of G protein subunits such that stimulation by one sensitizes to the stimulation by the other.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transgenic mice were generated with cardiac-specific overexpression of the G protein-coupled receptor kinase-5 (GRK5), a serine/threonine kinase most abundantly expressed in the heart compared with other tissues. Animals overexpressing GRK5 showed marked beta-adrenergic receptor desensitization in both the anesthetized and conscious state compared with nontransgenic control mice, while the contractile response to angiotensin II receptor stimulation was unchanged. In contrast, the angiotensin II-induced rise in contractility was significantly attenuated in transgenic mice overexpressing the beta-adrenergic receptor kinase-1, another member of the GRK family. These data suggest that myocardial overexpression of GRK5 results in selective uncoupling of G protein-coupled receptors and demonstrate that receptor specificity of the GRKs may be important in determining the physiological phenotype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanism of mitogen-activated protein (MAP) kinase activation by pertussis toxin-sensitive Gi-coupled receptors is known to involve the beta gamma subunits of heterotrimeric G proteins (G beta gamma), p21ras activation, and an as-yet-unidentified tyrosine kinase. To investigate the mechanism of G beta gamma-stimulated p21ras activation, G beta gamma-mediated tyrosine phosphorylation was examined by overexpressing G beta gamma or alpha 2-C10 adrenergic receptors (ARs) that couple to Gi in COS-7 cells. Immunoprecipitation of phosphotyrosine-containing proteins revealed a 2- to 3-fold increase in the phosphorylation of two proteins of approximately 50 kDa (designated as p52) in G beta gamma-transfected cells or in alpha 2-C10 AR-transfected cells stimulated with the agonist UK-14304. The latter response was pertussis toxin sensitive. These proteins (p52) were also specifically immunoprecipitated with anti-Shc antibodies and comigrated with two Shc proteins, 46 and 52 kDa. The G beta gamma- or alpha 2-C10 AR-stimulated p52 (Shc) phosphorylation was inhibited by coexpression of the carboxyl terminus of beta-adrenergic receptor kinase (a G beta gamma-binding pleckstrin homology domain peptide) or by the tyrosine kinase inhibitors genistein and herbimycin A, but not by a dominant negative mutant of p21ras. Worthmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) inhibited phosphorylation of p52 (Shc), implying involvement of PI3K. These results suggest that G beta gamma-stimulated Shc phosphorylation represents an early step in the pathway leading to p21ras activation, similar to the mechanism utilized by growth factor tyrosine kinase receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein–kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein–kinin system could be involved in the development or progression of cardiovascular diseases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of the cardiac myocyte as a mediator of paracrine signaling in the heart has remained unclear. To address this issue, we generated mice with cardiac myocyte-specific deletion of the vascular endothelial growth factor gene, thereby producing a cardiomyocyte-specific knockout of a secreted factor. The hearts of these mice had fewer coronary microvessels, thinned ventricular walls, depressed basal contractile function, induction of hypoxia-responsive genes involved in energy metabolism, and an abnormal response to β-adrenergic stimulation. These findings establish the critical importance of cardiac myocyte-derived vascular endothelial growth factor in cardiac morphogenesis and determination of heart function. Further, they establish an adult murine model of hypovascular nonnecrotic cardiac contractile dysfunction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric oxide (NO) is an important mediator of inflammatory responses in the lung and a key regulator of bronchomotor tone. An airway NO synthase (NOS; EC 1.14.13.39) has been proposed as a source of endogenous NO in the lung but has not been clearly defined. Through molecular cloning, we conclusively demonstrate that NO synthesis in normal human airways is due to the continuous expression of the inducible NOS (iNOS) isoform in airway epithelial cells. Although iNOS mRNA expression is abundant in airway epithelial cells, expression is not detected in other pulmonary cell types, indicating that airway epithelial cells are unique in the continuous pattern of iNOS expression in the lung. In situ analysis reveals all airway epithelial cell types express iNOS. However, removal of epithelial cells from the in vivo airway environment leads to rapid loss of iNOS expression, which suggests expression is dependent upon conditions and/or factors present in the airway. Quantitation of NOS activity in epithelial cell lysates indicates nanomolar levels of NO synthesis occur in vivo. Remarkably, the high-level iNOS expression is constant in airway epithelium of normal individuals over time. However, expression is strikingly decreased by inhaled corticosteroids and beta-adrenergic agonists, medications commonly used in treatment of inflammatory airway diseases. Based upon these findings, we propose that respiratory epithelial cells are key inflammatory cells in the airway, functioning in host defense and potentially playing a role in airway inflammation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the long-term modulation of K+ channels by cAMP in cultured murine colliculi neurons. A short (1-2 s) application of 8-Br-cAMP induced a long-lasting broadening of the action potential, a loss of after-hyperpolarization, and a reduction in spike accommodation. In agreement with these changes, 8-Br-cAMP produced a long-lasting (2 hr) inhibition of a K+ current. These effects were also observed after a short activation of the pituitary adenylyl cyclase-activating polypeptide, beta-adrenergic, and 5-hydroxytryptamine type 4 (5-HT4) receptors, all known to increase cAMP. A transient activation of the cAMP-dependent protein kinase and a long-lasting inhibition of phosphatases (up to 2 hr) were detected. The blockade of the K+ current resulting from a brief application of 8-Br-cAMP or 5-hydroxytryptamine was prolonged from 2 to 4 hr when protein-serine/threonine phosphatases 1 and 2A were inhibited with 10 nM okadaic acid. The critical steps following the cAMP-dependent protein kinase activation and resulting in a long-term blockade of phosphatases are discussed in this report.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

To investigate the molecular mechanism for stereospecific binding of agonists to beta 2-adrenergic receptors we used receptor models to identify potential binding sites for the beta-OH-group of the ligand, which defines the chiral center. Ser-165, located in transmembrane helix IV, and Asn-293, situated in the upper half of transmembrane helix VI, were identified as potential binding sites. Mutation of Ser-165 to Ala did not change the binding of either isoproterenol isomer as revealed after transient expression in human embryonic kidney (HEK)-293 cells. In contrast, a receptor mutant in which Asn-293 was replaced by Leu showed substantial loss of stereospecific isoproterenol binding. Adenylyl cyclase stimulation by this mutant after stable expression in CHO cells confirmed the substantial loss of stereospecificity for isoproterenol. In a series of agonists the loss of affinity in the Leu-293 mutant receptor was strongly correlated with the intrinsic activity of the compounds. Full agonists showed a 10-30-fold affinity loss, whereas partial agonists had almost the same affinity for both receptors. Stereospecific recognition of antagonists was unaltered in the Leu-293 mutant receptor. These data indicate a relationship between stereospecificity and intrinsic activity of agonists and suggest that Asn-293 is important for both properties of the agonist-receptor interaction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Amyloid plaques in Alzheimer disease are primarily aggregates of Aβ peptides that are derived from the amyloid precursor protein (APP). Neurotransmitter agonists that activate phosphatidylinositol hydrolysis and protein kinase C stimulate APP processing and generate soluble, non-amyloidogenic APP (APPs). Elevations in cAMP oppose this stimulatory effect and lead to the accumulation of cell-associated APP holoprotein containing amyloidogenic Aβ peptides. We now report that cAMP signaling can also increase cellular levels of APP holoprotein by stimulating APP gene expression in astrocytes. Treatment of astrocytes with norepinephrine or isoproterenol for 24 h increased both APP mRNA and holoprotein levels, and these increases were blocked by the β-adrenergic antagonist propranolol. Treatment with 8-bromo-adenosine 3′,5′-cyclic monophosphate or forskolin for 24 h similarly increased APP holoprotein levels; astrocytes were also transformed into process-bearing cells expressing increased amounts of glial fibrillary acidic protein, suggesting that these cells resemble reactive astrocytes. The increases in APP mRNA and holoprotein in astrocytes caused by cAMP stimulation were inhibited by the immunosuppressant cyclosporin A. Our study suggests that APP overexpression by reactive astrocytes during neuronal injury may contribute to Alzheimer disease neuropathology, and that immunosuppressants can inhibit cAMP activation of APP gene transcription.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A threonine to isoleucine polymorphism at amino acid 164 in the fourth transmembrane spanning domain of the beta 2-adrenergic receptor (beta 2AR) is known to occur in the human population. The functional consequences of this polymorphism to catecholamine signaling in relevant cells or to end-organ responsiveness, however, are not known. To explore potential differences between the two receptors, site-directed mutagenesis was carried out to mimic the polymorphism. Transgenic FVB/N mice were then created overexpressing wild-type (wt) beta 2AR or the mutant Ile-164 receptor in a targeted manner in the heart using a murine alpha myosin heavy chain promoter. The functional properties of the two receptors were then assessed at the level of in vitro cardiac myocyte signaling and in vivo cardiac responses in intact animals. The expression levels of these receptors in the two lines chosen for study were approximately 1200 fmol/mg protein in cardiac membranes, which represents a approximately 45-fold increase in expression over endogenous beta AR. Myocyte membrane adenylyl cyclase activity in the basal state was significantly lower in the Ile-164 mice (19.5 +/- 2.7 pmol/min/mg) compared with wt beta 2AR mice (35.0 +/- 4.1 pmol/min/mg), as was the maximal isoproterenol-stimulated activity (49.8 +/- 7.8 versus 77.1 +/ 7.3 pmol/min/mg). In intact animals, resting heart rate (441 +/- 21 versus 534 +/- 17 bpm) and dP/dtmax (10,923 +/- 730 versus 15,308 +/- 471 mmHg/sec) were less in the Ile-164 mice as compared with wt beta 2AR mice. Similarly, the physiologic responses to infused isoproterenol were notably less in the mutant expressing mice. Indeed, these values, as well as other contractile parameters, were indistinguishable between Ile-164 mice and nontransgenic littermates. Taken together, these results demonstrate that the Ile-164 polymorphism is substantially dysfunctional in a relevant target tissue, as indicated by depressed receptor coupling to adenylyl cyclase in myocardial membranes and impaired receptor mediated cardiac function in vivo. Under normal homeostatic conditions or in circumstances where sympathetic responses are compromised due to diseased states, such as heart failure, this impairment may have important pathophysiologic consequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The frizzled gene family of putative Wnt receptors encodes proteins that have a seven-transmembrane-spanning motif characteristic of G protein-linked receptors, though no loss-of-function studies have demonstrated a requirement for G proteins for Frizzled signaling. We engineered a Frizzled-2 chimera responsive to β-adrenergic agonist by using the ligand-binding domains of the β2-adrenergic receptor. The expectation was that the chimera would be sensitive both to drug-mediated activation and blockade, thereby circumventing the problem of purifying soluble and active Wnt ligand to activate Frizzled. Expression of the chimera in zebrafish embryos demonstrated isoproterenol (ISO)-stimulated, propranolol-sensitive calcium transients, thereby confirming the β-adrenergic nature of Wnt signaling by the chimeric receptor. Because F9 embryonic teratocarcinoma cells form primitive endoderm after stable transfection of Frizzled-2 chimera and stimulation with ISO, they were subject to depletion of G protein subunits. ISO stimulation of endoderm formation of F9 stem cells expressing the chimeric receptor was blocked by pertussis toxin and by oligodeoxynucleotide antisense to Gαo, Gαt2, and Gβ2. Our results demonstrate the requirement of two pertussis toxin-sensitive G proteins, Gαo and Gαt, for signaling by the Frizzled-2 receptor.