15 resultados para barriers to change

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies have shown that inactivation of the MutS or MutL mismatch repair enzymes increases the efficiency of homeologous recombination between Escherichia coli and Salmonella typhimurium and between S. typhimurium and Salmonella typhi. However, even in mutants defective for mismatch repair the recombination frequencies are 102- to 103-fold less than observed during homologous recombination between a donor and recipient of the same species. In addition, the length of DNA exchanged during transduction between S. typhimurium and S. typhi is less than in transductions between strains of S. typhimurium. In homeologous transductions, mutations in the recD gene increased the frequency of transduction and the length of DNA exchanged. Furthermore, in mutS recD double mutants the frequency of homeologous recombination was nearly as high as that seen during homologous recombination. The phenotypes of the mutants indicate that the gene products of mutS and recD act independently. Because S. typhimurium and S. typhi are ≈98–99% identical at the DNA sequence level, the inhibition of recombination is probably not due to a failure of RecA to initiate strand exchange. Instead, these results suggest that mismatches act at a subsequent step, possibly by slowing the rate of branch migration. Slowing the rate of branch migration may stimulate helicase proteins to unwind rather than extend the heteroduplex and leave uncomplexed donor DNA susceptible to further degradation by RecBCD exonuclease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theory of the unzipping of double-stranded DNA is presented and is compared to recent micromanipulation experiments. It is shown that the interactions that stabilize the double helix and the elastic rigidity of single strands simply determine the sequence-dependent ≈12-pN force threshold for DNA strand separation. Using a semimicroscopic model of the binding between nucleotide strands, we show that the greater rigidity of the strands when formed into double-stranded DNA, relative to that of isolated strands, gives rise to a potential barrier to unzipping. The effects of this barrier are derived analytically. The force to keep the extremities of the molecule at a fixed distance, the kinetic rates for strand unpairing at fixed applied force, and the rupture force as a function of loading rate are calculated. The dependence of the kinetics and of the rupture force on molecule length is also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the MYL mutant of the Arc repressor dimer, sets of partially buried salt-bridge and hydrogen-bond interactions mediated by Arg-31, Glu-36, and Arg-40 in each subunit are replaced by hydrophobic interactions between Met-31, Tyr-36, and Leu-40. The MYL refolding/dimerization reaction differs from that of wild type in being 10- to 1250-fold faster, having an earlier transition state, and depending upon viscosity but not ionic strength. Formation of the wild-type salt bridges in a hydrophobic environment clearly imposes a kinetic barrier to folding, which can be lowered by high salt concentrations. The changes in the position of the transition state and viscosity dependence can be explained if denatured monomers interact to form a partially folded dimeric intermediate, which then continues folding to form the native dimer. The second step is postulated to be rate limiting for wild type. Replacing the salt bridge with hydrophobic interactions lowers this barrier for MYL. This makes the first kinetic barrier rate limiting for MYL refolding and creates a downhill free-energy landscape in which most molecules which reach the intermediate state continue to form native dimers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Developing autoreactive B cells edit their B cell antigen receptor (BCR) in the bone marrow and are clonally deleted when they fail to reexpress an innocent BCR. Here, inducible Cre-loxP-mediated gene inversion is used to change the specificity of the BCR on mature IgM+ IgD+ B cells in vivo to address the fate of lymphocytes encountering self-antigens at this developmental stage. Expression of an autoreactive BCR on mature B cells leads to their rapid elimination from the periphery, a process that is inhibited by constitutive bcl-2 transgene expression in an antigen dose-dependent manner. Thus, selection of mature B cells into the long-lived peripheral pool does not prevent their deletion upon encounter of self-antigens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Genetic and phenotypic instability are hallmarks of cancer cells, but their cause is not clear. The leading hypothesis suggests that a poorly defined gene mutation generates genetic instability and that some of many subsequent mutations then cause cancer. Here we investigate the hypothesis that genetic instability of cancer cells is caused by aneuploidy, an abnormal balance of chromosomes. Because symmetrical segregation of chromosomes depends on exactly two copies of mitosis genes, aneuploidy involving chromosomes with mitosis genes will destabilize the karyotype. The hypothesis predicts that the degree of genetic instability should be proportional to the degree of aneuploidy. Thus it should be difficult, if not impossible, to maintain the particular karyotype of a highly aneuploid cancer cell on clonal propagation. This prediction was confirmed with clonal cultures of chemically transformed, aneuploid Chinese hamster embryo cells. It was found that the higher the ploidy factor of a clone, the more unstable was its karyotype. The ploidy factor is the quotient of the modal chromosome number divided by the normal number of the species. Transformed Chinese hamster embryo cells with a ploidy factor of 1.7 were estimated to change their karyotype at a rate of about 3% per generation, compared with 1.8% for cells with a ploidy factor of 0.95. Because the background noise of karyotyping is relatively high, the cells with low ploidy factor may be more stable than our method suggests. The karyotype instability of human colon cancer cell lines, recently analyzed by Lengnauer et al. [Lengnauer, C., Kinzler, K. W. & Vogelstein, B. (1997) Nature (London) 386, 623–627], also corresponds exactly to their degree of aneuploidy. We conclude that aneuploidy is sufficient to explain genetic instability and the resulting karyotypic and phenotypic heterogeneity of cancer cells, independent of gene mutation. Because aneuploidy has also been proposed to cause cancer, our hypothesis offers a common, unique mechanism of altering and simultaneously destabilizing normal cellular phenotypes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Linkage and association analyses were performed to identify loci affecting disease susceptibility by scoring previously characterized sequence variations such as microsatellites and single nucleotide polymorphisms. Lack of markers in regions of interest, as well as difficulty in adapting various methods to high-throughput settings, often limits the effectiveness of the analyses. We have adapted the Escherichia coli mismatch detection system, employing the factors MutS, MutL and MutH, for use in PCR-based, automated, high-throughput genotyping and mutation detection of genomic DNA. Optimal sensitivity and signal-to-noise ratios were obtained in a straightforward fashion because the detection reaction proved to be principally dependent upon monovalent cation concentration and MutL concentration. Quantitative relationships of the optimal values of these parameters with length of the DNA test fragment were demonstrated, in support of the translocation model for the mechanism of action of these enzymes, rather than the molecular switch model. Thus, rapid, sequence-independent optimization was possible for each new genomic target region. Other factors potentially limiting the flexibility of mismatch scanning, such as positioning of dam recognition sites within the target fragment, have also been investigated. We developed several strategies, which can be easily adapted to automation, for limiting the analysis to intersample heteroduplexes. Thus, the principal barriers to the use of this methodology, which we have designated PCR candidate region mismatch scanning, in cost-effective, high-throughput settings have been removed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Salt accumulation in spinach (Spinacia oleracea L.) leaves first inhibits photosynthesis by decreasing stomatal and mesophyll conductances to CO2 diffusion and then impairs ribulose-1,5-bisphosphate carboxylase/oxygenase (S. Delfine, A. Alvino, M. Zacchini, F. Loreto [1998] Aust J Plant Physiol 25: 395–402). We measured gas exchange and fluorescence in spinach recovering from salt accumulation. When a 21-d salt accumulation was reversed by 2 weeks of salt-free irrigation (rewatering), stomatal and mesophyll conductances and photosynthesis partially recovered. For the first time, to our knowledge, it is shown that a reduction of mesophyll conductance can be reversed and that this may influence photosynthesis. Photosynthesis and conductances did not recover when salt drainage was restricted and Na content in the leaves was greater than 3% of the dry matter. Incomplete recovery of photosynthesis in rewatered and control leaves may be attributed to an age-related reduction of conductances. Biochemical properties were not affected by the 21-d salt accumulation. However, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and content were reduced by a 36- to 50-d salt accumulation. Photochemical efficiency was reduced only in 50-d salt-stressed leaves because of a decrease in the fraction of open photosystem II centers. A reduction in chlorophyll content and an increase in the chlorophyll a/b ratio were observed in 43- and 50-d salt-stressed leaves. Low chlorophyll affects light absorptance but is unlikely to change light partitioning between photosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies of carbon isotopes and cadmium in bottom-dwelling foraminifera from ocean sediment cores have advanced our knowledge of ocean chemical distributions during the late Pleistocene. Last Glacial Maximum data are consistent with a persistent high-ΣCO2 state for eastern Pacific deep water. Both tracers indicate that the mid-depth North and tropical Atlantic Ocean almost always has lower ΣCO2 levels than those in the Pacific. Upper waters of the Last Glacial Maximum Atlantic are more ΣCO2-depleted and deep waters are ΣCO2-enriched compared with the waters of the present. In the northern Indian Ocean, δ13C and Cd data are consistent with upper water ΣCO2 depletion relative to the present. There is no evident proximate source of this ΣCO2-depleted water, so I suggest that ΣCO2-depleted North Atlantic intermediate/deep water turns northward around the southern tip of Africa and moves toward the equator as a western boundary current. At long periods (>15,000 years), Milankovitch cycle variability is evident in paleochemical time series. But rapid millennial-scale variability can be seen in cores from high accumulation rate series. Atlantic deep water chemical properties are seen to change in as little as a few hundred years or less. An extraordinary new 52.7-m-long core from the Bermuda Rise contains a faithful record of climate variability with century-scale resolution. Sediment composition can be linked in detail with the isotope stage 3 interstadials recorded in Greenland ice cores. This new record shows at least 12 major climate fluctuations within marine isotope stage 5 (about 70,000–130,000 years before the present).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review analyzes the existing research on the information needs of rural health professionals and relates it to the broader information-needs literature to establish whether the information needs of rural health professionals differ from those of other health professionals. The analysis of these studies indicates that rural health practitioners appear to have the same basic needs for patient-care information as their urban counterparts, and that both groups rely on colleagues and personal libraries as their main sources of information. Rural practitioners, however, tend to make less use of journals and online databases and ask fewer clinical questions; a difference that correlates with geographic and demographic factors. Rural practitioners experience pronounced barriers to information access including lack of time, isolation, inadequate library access, lack of equipment, lack of skills, costs, and inadequate Internet infrastructure. Outreach efforts to this group of underserved health professionals must be sustained to achieve equity in information access and to change information-seeking behaviors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rational engineering of enzymes involves introducing key amino acids guided by a knowledge of protein structure to effect a desirable change in function. To date, all successful attempts to change specificity have been limited to substituting individual amino acids within a protein fold. However, the infant field of protein engineering will only reach maturity when changes in function can be generated by rationally engineering secondary structures. Guided by x-ray crystal structures and molecular modeling, site-directed mutagenesis has been used to systematically invert the coenzyme specificity of Thermus thermophilus isopropylmalate dehydrogenase from a 100-fold preference for NAD to a 1000-fold preference for NADP. The engineered mutant, which is twice as active as wild type, contains four amino acid substitutions and an alpha-helix and loop that replaces the original beta-turn. These results demonstrate that rational engineering of secondary structures to produce enzymes with novel properties is feasible.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Scrapie is a transmissible neurodegenerative disease that appears to result from an accumulation in the brain of an abnormal protease-resistant isoform of prion protein (PrP) called PrPsc. Conversion of the normal, protease-sensitive form of PrP (PrPc) to protease-resistant forms like PrPsc has been demonstrated in a cell-free reaction composed largely of hamster PrPc and PrPsc. We now report studies of the species specificity of this cell-free reaction using mouse, hamster, and chimeric PrP molecules. Combinations of hamster PrPc with hamster PrPsc and mouse PrPc with mouse PrPsc resulted in the conversion of PrPc to protease-resistant forms. Protease-resistant PrP species were also generated in the nonhomologous reaction of hamster PrPc with mouse PrPsc, but little conversion was observed in the reciprocal reaction. Glycosylation of the PrPc precursors was not required for species specificity in the conversion reaction. The relative conversion efficiencies correlated with the relative transmissibilities of these strains of scrapie between mice and hamsters. Conversion experiments performed with chimeric mouse/hamster PrPc precursors indicated that differences between PrPc and PrPsc at residues 139, 155, and 170 affected the conversion efficiency and the size of the resultant protease-resistant PrP species. We conclude that there is species specificity in the cell-free interactions that lead to the conversion of PrPc to protease-resistant forms. This specificity may be the molecular basis for the barriers to interspecies transmission of scrapie and other transmissible spongiform encephalopathies in vivo.