21 resultados para aspartate aminotransferase blood level

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore the relationship between mitochondrial aspartate aminotransferase (mAspAT; EC 2.6.1.1) and plasma membrane fatty acid-binding protein (FABPpm) and their role in cellular fatty acid uptake, 3T3 fibroblasts were cotransfected with plasmid pMAAT2, containing a full-length mAspAT cDNA downstream of a Zn(2+)-inducible metallothionein promoter, and pFR400, which conveys methotrexate resistance. Transfectants were selected in methotrexate, cloned, and exposed to increasing methotrexate concentrations to induce gene amplification. Stably transfected clones were characterized by Southern blotting; those with highest copy numbers of pFR400 alone (pFR400) or pFR400 and pMAAT2 (pFR400/pMAAT2) were expanded for further study. [3H]Oleate uptake was measured in medium containing 500 microM bovine serum albumin and 125-1000 microM total oleate (unbound oleate, 18-420 nM) and consisted of saturable and nonsaturable components. pFR400/pMAAT2 cells exhibited no increase in the rate constant for nonsaturable oleate uptake or in the uptake rate of [14C]octanoate under any conditions. By contrast, Vmax (fmol/sec per 50,000 cells) of the saturable oleate uptake component increased 3.5-fold in pFR400/pMAAT2 cells compared to pFR400, with a further 3.2-fold increase in the presence of Zn2+. Zn2+ had no effect in pFR400 controls (P > 0.5). The overall increase in Vmax between pFR400 and pFR400/pMAAT2 in the presence of Zn2+ was 10.4-fold (P < 0.01) and was highly correlated (r = 0.99) with expression of FABPpm in plasma membranes as determined by Western blotting. Neither untransfected 3T3 nor pFR400 cells expressed cell surface FABPpm detectable by immunofluorescence. By contrast, plasma membrane immunofluorescence was detected in pFR400/pMAAT2 cells, especially if cultured in 100 microM Zn2+. The data support the dual hypotheses that mAspAT and FABPpm are identical and mediate saturable long-chain free fatty acid uptake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteases as well as alterations in intracellular calcium have important roles in hepatic preservation-reperfusion injury, and increased calpain activity recently has been demonstrated in liver allografts. Experiments were designed to evaluate (i) hepatic cytosolic calpain activity during different periods of cold ischemia (CI), rewarming, or reperfusion, and (ii) effects of inhibition of calpain on liver graft function using the isolated perfused rat liver and arterialized orthotopic liver transplantation models. Calpain activity was assayed using the fluorogenic substrate Suc-Leu-Leu-Val-Tyr-7-amino-4-methyl coumarin (AMC) and expressed as mean ± SD pmol AMC released/min per mg of cytosolic protein. Calpain activity rose significantly after 24 hr of CI in University of Wisconsin solution and further increased with longer preservation. Activity also increased within 30 min of rewarming, peaking at 120 min. Increased durations of CI preceding rewarming resulted in significantly higher activity (P < 0.01). Calpain activity increased rapidly upon reperfusion and was significantly enhanced by previous CI (P < 0.01). Calpain inhibition with Cbz-Val-Phe methyl ester significantly decreased aspartate aminotransferase released in the isolated perfused rat liver perfusate (P < 0.05). Duration of survival after orthotopic liver transplantation using livers cold-preserved for 40 hr was also significantly increased (P < 0.05) with calpain inhibitor. In conclusion, calpain proteases are activated during each phase of transplantation and are likely to play an important role in the mechanisms of preservation-reperfusion injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional structure of glutamate-1-semialdehyde aminomutase (EC 5.4.3.8), an α2-dimeric enzyme from Synechococcus, has been determined by x-ray crystallography using heavy atom derivative phasing. The structure, refined at 2.4-Å resolution to an R-factor of 18.7% and good stereochemistry, explains many of the enzyme’s unusual specificity and functional properties. The overall fold is that of aspartate aminotransferase and related B6 enzymes, but it also has specific features. The structure of the complex with gabaculine, a substrate analogue, shows unexpectedly that the substrate binding site involves residues from the N-terminal domain of the molecule, notably Arg-32. Glu-406 is suitably positioned to repel α-carboxylic acids, thereby suggesting a basis for the enzyme’s reaction specificity. The subunits show asymmetry in cofactor binding and in the mobilities of the residues 153–181. In the unliganded enzyme, one subunit has the cofactor bound as an aldimine of pyridoxal phosphate with Lys-273 and, in this subunit, residues 153–181 are disordered. In the other subunit in which the cofactor is not covalently bound, residues 153–181 are well defined. Consistent with the crystallographically demonstrated asymmetry, a form of the enzyme in which both subunits have pyridoxal phosphate bound to Lys-273 through a Schiff base showed biphasic reduction by borohydride in solution. Analysis of absorption spectra during reduction provided evidence of communication between the subunits. The crystal structure of the reduced form of the enzyme shows that, despite identical cofactor binding in each monomer, the structural asymmetry at residues 153–181 remains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural selection is one of the most fundamental processes in biology. However, there is still a controversy over the importance of selection in microevolution of molecular traits. Despite the general lack of data most authors hold the view that selection on molecular characters may be important, but at lower rates than selection on most phenotypic traits. Here we present evidence that natural selection may contribute substantially to molecular variation on a scale of meters only. In populations of the marine snail Littorina saxatilis living on exposed rocky shores, steep microclines in allele frequencies between splash and surf zone groups are present in the enzyme aspartate aminotransferase (allozyme locus Aat; EC. 2.6.1.1). We followed one population over 7 years, including a period of strong natural perturbation. The surf zone part of the population dominated by the allele Aat100 was suddenly eliminated by a bloom of a toxin-producing microflagellate. Downshore migration of splash zone snails with predominantly Aat120 alleles resulted in a drastic increase in surf zone frequency of Aat120, from 0.4 to 0.8 over 2 years. Over the next four to six generations, however, the frequency of Aat120 returned to the original value. We estimated the coefficient of selection of Aat120 in the surf zone to be about 0.4. Earlier studies show similar or even sharper Aat clines in other countries. Thus, we conclude that microclinal selection is an important evolutionary force in this system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiotensin produced systemically or locally in tissues such as the brain plays an important role in the regulation of blood pressure and in the development of hypertension. We have established transgenic rats [TGR(ASrAOGEN)] expressing an antisense RNA against angiotensinogen mRNA specifically in the brain. In these animals, the brain angiotensinogen level is reduced by more than 90% and the drinking response to intracerebroventricular renin infusions is decreased markedly compared with control rats. Blood pressure of transgenic rats is lowered by 8 mmHg (1 mmHg = 133 Pa) compared with control rats. Crossbreeding of TGR(ASrAOGEN) with a hypertensive transgenic rat strain exhibiting elevated angiotensin II levels in tissues results in a marked attenuation of the hypertensive phenotype. Moreover, TGR(ASrAOGEN) exhibit a diabetes insipidus-like syndrome producing an increased amount of urine with decreased osmolarity. The observed reduction in plasma vasopressin by 35% may mediate these phenotypes of TGR(ASrAOGEN). This new animal model presenting long-term and tissue-specific down-regulation of angiotensinogen corroborates the functional significance of local angiotensin production in the brain for the central regulation of blood pressure and for the pathogenesis of hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly sensitive assay combining immunomagnetic enrichment with multiparameter flow cytometric and immunocytochemical analysis has been developed to detect, enumerate, and characterize carcinoma cells in the blood. The assay can detect one epithelial cell or less in 1 ml of blood. Peripheral blood (10–20 ml) from 30 patients with carcinoma of the breast, from 3 patients with prostate cancer, and from 13 controls was examined by flow cytometry for the presence of circulating epithelial cells defined as nucleic acid+, CD45−, and cytokeratin+. Highly significant differences in the number of circulating epithelial cells were found between normal controls and patients with cancer including 17 with organ-confined disease. To determine whether the circulating epithelial cells in the cancer patients were neoplastic cells, cytospin preparations were made after immunomagnetic enrichment and were analyzed. Epithelial cells from patients with breast cancer generally stained with mAbs against cytokeratin and 3 of 5 for mucin-1. In contrast, no cells that stained for these antigens were observed in the blood from normal controls. The morphology of the stained cells was consistent with that of neoplastic cells. Of 8 patients with breast cancer followed for 1–10 months, there was a good correlation between changes in the level of tumor cells in the blood with both treatment with chemotherapy and clinical status. The present assay may be helpful in early detection, in monitoring disease, and in prognostication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have applied functional MRI (fMRI) based on blood oxygenation level-dependent (BOLD) image-contrast to map odor-elicited olfactory responses at the laminar level in the rat olfactory bulb (OB) elicited by iso-amyl acetate (10−2 dilution of saturated vapor) with spatial and temporal resolutions of 220×220×1,000 μm and 36 s. The laminar structure of the OB was clearly depicted by high-resolution in vivo anatomical MRI with spatial resolution of 110×110×1,000 μm. In repeated BOLD fMRI measurements, highly significant (P < 0.001) foci were located in the outer layers of both OBs. The occurrence of focal OB activity within a domain at the level of individual glomeruli or groups of glomeruli was corroborated on an intra- and inter-animal basis under anesthetized conditions with this noninvasive method. The dynamic studies demonstrated that the odor-elicited BOLD activations were highly reproducible on a time scale of minutes, whereas over tens of minutes the activations sometimes varied slowly. We found large BOLD signal (ΔS/S = 10–30%) arising from the olfactory nerve layer, which is devoid of synapses and composed of unmyelinated fibers and glial cells. Our results support previous studies with other methods showing that odors elicit activity within glomerular layer domains in the mammalian OB, and extend the analysis to shorter time periods at the level of individual glomeruli or groups of glomeruli. With further improvement, BOLD fMRI should be ideal for systematic analysis of the functional significance of individual glomeruli in olfactory information encoding and of spatiotemporal processing within the olfactory system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human herpesvirus 6 (HHV-6) like other herpesviruses, expresses sequentially immediate early (IE), early, and late genes during lytic infection. Evidence of ability to establish latent infection has not been available, but by analogy with other herpesviruses it could be expected that IE genes that regulate and transactivate late genes would not be expressed. We report that peripheral blood mononuclear cells of healthy individuals infected with HHV-6 express the U94 gene, transcribed under IE conditions. Transcription of other IE genes (U16/17, U39, U42, U81, U89/90, U91) was not detected. To verify that U94 may play a role in the maintenance of the latent state, we derived lymphoid cell lines that stably expressed U94. HHV-6 was able to infect these cells, but viral replication was restricted. No cytopathic effect developed. Furthermore, viral transcripts were present in the first days postinfection and declined thereafter. A similar decline in the level of intracellular viral DNA also was observed. These findings are consistent with the hypothesis that the U94 gene product of HHV-6 regulates viral gene expression and enables the establishment and/or maintenance of latent infection in lymphoid cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern functional neuroimaging methods, such as positron-emission tomography (PET), optical imaging of intrinsic signals, and functional MRI (fMRI) utilize activity-dependent hemodynamic changes to obtain indirect maps of the evoked electrical activity in the brain. Whereas PET and flow-sensitive MRI map cerebral blood flow (CBF) changes, optical imaging and blood oxygenation level-dependent MRI map areas with changes in the concentration of deoxygenated hemoglobin (HbR). However, the relationship between CBF and HbR during functional activation has never been tested experimentally. Therefore, we investigated this relationship by using imaging spectroscopy and laser-Doppler flowmetry techniques, simultaneously, in the visual cortex of anesthetized cats during sensory stimulation. We found that the earliest microcirculatory change was indeed an increase in HbR, whereas the CBF increase lagged by more than a second after the increase in HbR. The increased HbR was accompanied by a simultaneous increase in total hemoglobin concentration (Hbt), presumably reflecting an early blood volume increase. We found that the CBF changes lagged after Hbt changes by 1 to 2 sec throughout the response. These results support the notion of active neurovascular regulation of blood volume in the capillary bed and the existence of a delayed, passive process of capillary filling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cortical blood flow at the level of individual capillaries and the coupling of neuronal activity to flow in capillaries are fundamental aspects of homeostasis in the normal and the diseased brain. To probe the dynamics of blood flow at this level, we used two-photon laser scanning microscopy to image the motion of red blood cells (RBCs) in individual capillaries that lie as far as 600 μm below the pia mater of primary somatosensory cortex in rat; this depth encompassed the cortical layers with the highest density of neurons and capillaries. We observed that the flow was quite variable and exhibited temporal fluctuations around 0.1 Hz, as well as prolonged stalls and occasional reversals of direction. On average, the speed and flux (cells per unit time) of RBCs covaried linearly at low values of flux, with a linear density of ≈70 cells per mm, followed by a tendency for the speed to plateau at high values of flux. Thus, both the average velocity and density of RBCs are greater at high values of flux than at low values. Time-locked changes in flow, localized to the appropriate anatomical region of somatosensory cortex, were observed in response to stimulation of either multiple vibrissae or the hindlimb. Although we were able to detect stimulus-induced changes in the flux and speed of RBCs in some single trials, the amplitude of the stimulus-evoked changes in flow were largely masked by basal fluctuations. On average, the flux and the speed of RBCs increased transiently on stimulation, although the linear density of RBCs decreased slightly. These findings are consistent with a stimulus-induced decrease in capillary resistance to flow.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have spectroscopically determined breath ammonia levels in seven patients with end-stage renal disease while they were undergoing hemodialysis at the University of California, Los Angeles, dialysis center. We correlated these measurements against simultaneously taken blood samples that were analyzed for blood urea nitrogen (BUN) and creatinine, which are the accepted standards indicating the level of nitrogenous waste loading in a patient's bloodstream. Initial levels of breath ammonia, i.e., at the beginning of dialysis, are between 1,500 ppb and 2,000 ppb (parts per billion). These levels drop very sharply in the first 15–30 min as the dialysis proceeds. We found the reduction in breath ammonia concentration to be relatively slow from this point on to the end of dialysis treatment, at which point the levels tapered off at 150 to 200 ppb. For each breath ammonia measurement, taken at 15–30 min intervals during the dialysis, we also sampled the patient's blood for BUN and creatinine. The breath ammonia data were available in real time, whereas the BUN and creatinine data were available generally 24 h later from the laboratory. We found a good correlation between breath ammonia concentration and BUN and creatinine. For one of the patients, the correlation gave an R2 of 0.95 for breath ammonia and BUN correlation and an R2 of 0.83 for breath ammonia and creatinine correlation. These preliminary data indicate the possibility of using the real-time breath ammonia measurements for determining efficacy and endpoint of hemodialysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integrity of cell membranes is maintained by a balance between the amount of cholesterol and the amounts of unsaturated and saturated fatty acids in phospholipids. This balance is maintained by membrane-bound transcription factors called sterol regulatory element-binding proteins (SREBPs) that activate genes encoding enzymes of cholesterol and fatty acid biosynthesis. To enhance transcription, the active NH2-terminal domains of SREBPs are released from endoplasmic reticulum membranes by two sequential cleavages. The first is catalyzed by Site-1 protease (S1P), a membrane-bound subtilisin-related serine protease that cleaves the hydrophilic loop of SREBP that projects into the endoplasmic reticulum lumen. The second cleavage, at Site-2, requires the action of S2P, a hydrophobic protein that appears to be a zinc metalloprotease. This cleavage is unusual because it occurs within a membrane-spanning domain of SREBP. Sterols block SREBP processing by inhibiting S1P. This response is mediated by SREBP cleavage-activating protein (SCAP), a regulatory protein that activates S1P and also serves as a sterol sensor, losing its activity when sterols overaccumulate in cells. These regulated proteolytic cleavage reactions are ultimately responsible for controlling the level of cholesterol in membranes, cells, and blood.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupling of cerebral blood flow (CBF) and cerebral metabolic rate for oxygen (CMRO2) in physiologically activated brain states remains the subject of debates. Recently it was suggested that CBF is tightly coupled to oxidative metabolism in a nonlinear fashion. As part of this hypothesis, mathematical models of oxygen delivery to the brain have been described in which disproportionately large increases in CBF are necessary to sustain even small increases in CMRO2 during activation. We have explored the coupling of CBF and oxygen delivery by using two complementary methods. First, a more complex mathematical model was tested that differs from those recently described in that no assumptions were made regarding tissue oxygen level. Second, [15O] water CBF positron emission tomography (PET) studies in nine healthy subjects were conducted during states of visual activation and hypoxia to examine the relationship of CBF and oxygen delivery. In contrast to previous reports, our model showed adequate tissue levels of oxygen could be maintained without the need for increased CBF or oxygen delivery. Similarly, the PET studies demonstrated that the regional increase in CBF during visual activation was not affected by hypoxia. These findings strongly indicate that the increase in CBF associated with physiological activation is regulated by factors other than local requirements in oxygen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the relative importance of ornithine (Orn) as a precursor in proline (Pro) synthesis, we isolated and sequenced a cDNA encoding the Orn-δ-aminotransferase (δ-OAT) from Arabidopsis thaliana. The deduced amino acid sequence showed high homology with bacterial, yeast, mammalian, and plant sequences, and the N-terminal residues exhibited several common features with a mitochondrial transit peptide. Our results show that under both salt stress and normal conditions, δ-OAT activity and mRNA in young plantlets are slightly higher than in older plants. This appears to be related to the necessity to dispose of an easy recycling product, glutamate. Analysis of the expression of the gene revealed a close association with salt stress and Pro production. In young plantlets, free Pro content, Δ1-pyrroline-5-carboxylate synthase mRNA, δ-OAT activity, and δ-OAT mRNA were all increased by salt-stress treatment. These results suggest that for A. thaliana, the Orn pathway, together with the glutamate pathway, plays an important role in Pro accumulation during osmotic stress. Conversely, in 4-week-old A. thaliana plants, although free Pro level also increased under salt-stress conditions, the δ-OAT activity appeared to be unchanged and δ-OAT mRNA was not detectable. Δ1-pyrroline-5-carboxylate synthase mRNA was still induced at a similar level. Therefore, for the adult plants the free Pro increase seemed to be due to the activity of the enzymes of the glutamate pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In previous studies we showed that 5 days of treatment with granulocyte colony-stimulating factor (G-CSF) and stem cell factor (SCF) mobilized murine repopulating cells to the peripheral blood (PB) and that these cells could be efficiently transduced with retroviral vectors. We also found that, 7-14 days after cytokine treatment, the repopulating ability of murine bone marrow (BM) increased 10-fold. In this study we examined the efficiency of gene transfer into cytokine-primed murine BM cells and extended our observations to a nonhuman primate autologous transplantation model. G-CSF/SCF-primed murine BM cells collected 7-14 days after cytokine treatment were equivalent to post-5-fluorouracil BM or G-CSF/SCF-mobilized PB cells as targets for retroviral gene transfer. In nonhuman primates, CD34-enriched PB cells collected after 5 days of G-CSF/SCF treatment and CD34-enriched BM cells collected 14 days later were superior targets for retroviral gene transfer. When a clinically approved supernatant infection protocol with low-titer vector preparations was used, monkeys had up to 5% of circulating cells containing the vector for up to a year after transplantation. This relatively high level of gene transfer was confirmed by Southern blot analysis. Engraftment after transplantation using primed BM cells was more rapid than that using steady-state bone marrow, and the fraction of BM cells saving the most primitive CD34+/CD38- or CD34+/CD38dim phenotype increased 3-fold. We conclude that cytokine priming with G-CSF/SCF may allow collection of increased numbers of primitive cells from both the PB and BM that have improved susceptibility to retroviral transduction, with many potential applications in hematopoietic stem cell-directed gene therapy.