8 resultados para aristolan-8-en-1-one

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A collection of 8,000 Arabidopsis thaliana plants carrying 48,000 insertions of the maize transposable element En-1 has been generated. This population was used for reverse genetic analyses to identify insertions in individual gene loci. By using a PCR-based screening protocol, insertions were found in 55 genes. En-1 showed no preference for transcribed or untranscribed regions nor for a particular orientation relative to the gene of interest. In several cases, En-1 was inserted within a few kilobases upstream or downstream of the gene. En-1 was mobilized from such positions into the respective gene to cause gene disruption. Knock-out alleles of genes involved in flavonoid biosynthesis were generated. One mutant line contained an En-1 insertion in the flavonol synthase gene (FLS) and showed drastically reduced levels of kaempferol. Allelism tests with other lines containing En-1 insertions in the flavanone 3-hydroxylase gene (F3H) demonstrated that TRANSPARENT TESTA 6 (TT6) encodes flavanone 3-hydroxylase. The f3h and fls null mutants complete the set of A. thaliana lines defective in early steps of the flavonoid pathway. These experiments demonstrate the efficiency of the screening method and gene disruption strategy used for assigning functions to genes defined only by sequence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelio–mesenchymal interactions during kidney organogenesis are disrupted in integrin α8β1-deficient mice. However, the known ligands for integrin α8β1—fibronectin, vitronectin, and tenascin-C—are not appropriately localized to mediate all α8β1 functions in the kidney. Using a method of general utility for determining the distribution of unknown integrin ligands in situ and biochemical characterization of these ligands, we identified osteopontin (OPN) as a ligand for α8β1. We have coexpressed the extracellular domains of the mouse α8 and β1 integrin subunits as a soluble heterodimer with one subunit fused to alkaline phosphatase (AP) and have used the α8β1-AP chimera as a histochemical reagent on sections of mouse embryos. Ligand localization with α8β1-AP in developing bone and kidney was observed to be overlapping with the distribution of OPN. In “far Western” blots of mouse embryonic protein extracts, bands were detected with sizes corresponding to fibronectin, vitronectin, and unknown proteins, one of which was identical to the size of OPN. In a solid-phase binding assay we demonstrated that purified OPN binds specifically to α8β1-AP. Cell adhesion assays using K562 cells expressing α8β1 were used to confirm this result. Together with a recent report that anti-OPN antibodies disrupt kidney morphogenesis, our results suggest that interactions between OPN and integrin α8β1 may help regulate kidney development and other morphogenetic processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to characterize the cellular pathways along which nitric oxide (NO) stimulates renin secretion from the kidney. Using the isolated perfused rat kidney model we found that renin secretion stimulated 4- to 8-fold by low perfusion pressure (40 mmHg), by macula densa inhibition (100 μmol/liter of bumetanide), and by adenylate cyclase activation (3 nmol/liter of isoproterenol) was markedly attenuated by the NO synthase inhibitor nitro-l-arginine methyl ester (l-Name) (1 mM) and that the inhibition by l-Name was compensated by the NO-donor sodium nitroprusside (SNP) (10 μmol/liter). Similarly, inhibition of cAMP degradation by blockade of phosphodiesterase 1 (PDE-1) (20 μmol/liter of 8-methoxymethyl-1-methyl-3-(2-methylpropyl)xanthine) or of PDE-4 (20 μmol/liter of rolipram) caused a 3- to 4-fold stimulation of renin secretion that was attenuated by l-Name and that was even overcompensated by sodium nitroprusside. Inhibition of PDE-3 by 20 μmol/liter of milrinone or by 200 nmol/liter of trequinsin caused a 5- to 6-fold stimulation of renin secretion that was slightly enhanced by NO synthase inhibition and moderately attenuated by NO donation. Because PDE-3 is a cGMP-inhibited cAMP-PDE the role of endogenous cGMP for the effects of NO was examined by the use of the specific guanylate cyclase inhibitor 1-H-(1,2,4)oxodiazolo(4,3a)quinoxalin-1-one (20 μmol). In the presence of 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one the effect of NO on renin secretion was abolished, whereas PDE-3 inhibitors exerted their normal effects. These findings suggest that PDE-3 plays a major role for the cAMP control of renin secretion. Our findings are compatible with the idea that the stimulatory effects of endogenous and exogenous NO on renin secretion are mediated by a cGMP-induced inhibition of cAMP degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosine released during cardiac ischemia exerts a potent, protective effect in the heart. A newly recognized adenosine receptor, the A3 subtype, is expressed on the cardiac ventricular cell, and its activation protects the ventricular heart cell against injury during a subsequent exposure to ischemia. A cultured chicken ventricular myocyte model was used to investigate the cardioprotective role of a novel adenosine A3 receptor. The protection mediated by prior activation of A3 receptors exhibits a significantly longer duration than that produced by activation of the adenosine A1 receptor. Prior exposure of the myocytes to brief ischemia also protected them against injury sustained during a subsequent exposure to prolonged ischemia. The adenosine A3 receptor-selective antagonist 3-ethyl 5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) caused a biphasic inhibition of the protective effect of the brief ischemia. The concomitant presence of the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) converted the MRS1191-induced dose inhibition curve to a monophasic one. The combined presence of both antagonists abolished the protective effect induced by the brief ischemia. Thus, activation of both A1 and A3 receptors is required to mediate the cardioprotective effect of the brief ischemia. Cardiac atrial cells lack native A3 receptors and exhibit a shorter duration of cardioprotection than do ventricular cells. Transfection of atrial cells with cDNA encoding the human adenosine A3 receptor causes a sustained A3 agonist-mediated cardioprotection. The study indicates that cardiac adenosine A3 receptor mediates a sustained cardioprotective function and represents a new cardiac therapeutic target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eosinophil migration in vivo is markedly attenuated in rats treated chronically with the NO synthase (NOS) inhibitor Nω-nitro-l-arginine methyl ester (l-NAME). In this study, we investigated the existence of a NOS system in eosinophils. Our results demonstrated that rat peritoneal eosinophils strongly express both type II (30.2 ± 11.6% of counted cells) and type III (24.7 ± 7.4% of counted cells) NOS, as detected by immunohistochemistry using affinity purified mouse mAbs. Eosinophil migration in vitro was evaluated by using 48-well microchemotaxis chambers and the chemotactic agents used were N-formyl-methionyl-leucyl-phenylalanine (fMLP, 5 × 10−8 M) and leukotriene B4 (LTB4, 10−8 M). l-NAME (but not d-NAME) significantly inhibited the eosinophil migration induced by both fMLP (54% reduction for 1.0 mM; P < 0.05) and LTB4 (61% reduction for 1.0 mM; P < 0.05). In addition, the type II NOS inhibitor 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine and the type I/II NOS inhibitor 1-(2-trifluoromethylphenyl) imidazole also markedly (P < 0.05) attenuated fMLP- (52% and 38% reduction for 1.0 mM, respectively) and LTB4- (52% and 51% reduction for 1.0 mM, respectively) induced migration. The inhibition of eosinophil migration by l-NAME was mimicked by the soluble guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3,-a] quinoxalin-1-one (0.01 and 0.1 mM) and reversed by either sodium nitroprusside (0.1 mM) or dibutyryl cyclic GMP (1 mM). We conclude that eosinophils do express NO synthase(s) and that nitric oxide plays an essential role in eosinophil locomotion by acting through a cyclic GMP transduction mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluoxetine administered intraperitoneally to sham-operated or adrenalectomized/castrated (ADX/CX) male rats dose-dependently (2.9-58 mumol/kg i.p.) increased the brain content of the neurosteroid 3 alpha-hydroxy-5 alpha-pregnan-20-one (allopregnanolone, 3 alpha, 5 alpha-TH PROG). The increase of brain 3 alpha, 5 alpha-TH PROG content elicited by 58 mumol/kg fluoxetine lasted more than 2 hr and the range of its extent was comparable in sham-operated (approximately 3-10 pmol/g) and ADX/CX rats (2-9 pmol/g) and was associated with a decrease (from 2.8 to 1.1 pmol/g) in the 5 alpha-pregnan-3,20-dione (5 alpha-dihydroprogesterone, 5 alpha-DH PROG) content. The pregnenolone, progesterone, and dehydroepiandrosterone content failed to change in rats receiving fluoxetine. The extent of 3 alpha, 5 alpha-TH PROG accumulation elicited by fluoxetine treatment differed in various brain regions, with the highest increase occurring in the olfactory bulb. Importantly, fluoxetine failed to change the 3 alpha, 5 alpha-TH PROG levels in plasma, which in ADX/CX rats were at least two orders of magnitude lower than in the brain. Two other serotonin re-uptake inhibitors, paroxetine and imipramine, in doses equipotent to those of fluoxetine in inhibiting brain serotonin uptake, were either significantly less potent than fluoxetine (paroxetine) or failed to increase (imipramine) 3 alpha, 5 alpha-TH PROG brain content. The addition of 10 microM of 5 alpha-DH PROG to brain slices of ADX/CX rats preincubated with fluoxetine (10 microM, 15 min) elicited an accumulation of 3 alpha, 5 alpha-TH PROG greater than in slices preincubated with vehicle. A fluoxetine stimulation of brain 3 alpha, 5 alpha-TH PROG biosynthesis might be operative in the anxiolytic and antidysphoric actions of this drug.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of proton binding to the extracellular and the cytoplasmic surfaces of the purple membrane were measured by laser-induced proton pulses. Purple membranes, selectively labeled by fluorescein at Lys-129 of bacteriorhodopsin, were pulsed by protons released in the aqueous bulk from excited pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) and the reaction of protons with the indicators was measured. Kinetic analysis of the data imply that the two faces of the membrane differ in their buffer capacities and in their rates of interaction with bulk protons. The extracellular surface of the purple membrane contains one anionic proton binding site per protein molecule with pK = 5.1. This site is within a Coulomb cage radius (approximately 15 A) from Lys-129. The cytoplasmic surface of the purple membrane bears 4-5 protonable moieties (pK = 5.1) that, due to close proximity, function as a common proton binding site. The reaction of the proton with this cluster is at a very fast rate (3.10(10) M-1.s-1). The proximity between the elements is sufficiently high that even in 100 mM NaCl they still function as a cluster. Extraction of the chromophore retinal from the protein has a marked effect on the carboxylates of the cytoplasmic surface, and two to three of them assume positions that almost bar their reaction with bulk protons. The protonation dynamics determined at the surface of the purple membrane is of relevance both for the vectorial proton transport mechanism of bacteriorhodopsin and for energy coupling, not only in halobacteria, but also in complex chemiosmotic systems such as mitochondrial and thylakoid membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In natural streptavidin, tryptophan 120 of each subunit makes contacts with the biotin bound by an adjacent subunit through the dimer-dimer interface. To understand quantitatively the role of tryptophan 120 and its intersubunit communication in the properties of streptavidin, a streptavidin mutant in which tryptophan 120 is converted to phenylalanine was produced and characterized. The streptavidin mutant forms a tetrameric molecule and binds one biotin per subunit, as does natural streptavidin, indicating that the mutation of tryptophan 120 to phenylalanine has no significant effect on the basic properties of streptavidin. However, its biotin-binding affinity was reduced substantially, to approximately 10(8) M-1, indicating that the contact made by tryptophan 120 to biotin has a considerable contribution to the extremely tight biotin binding by streptavidin. The mutant retained bound biotin over a wide pH range or with the addition of urea up to 6 M at neutral pH. However, bound biotin was efficiently released by the addition of excess free biotin due, presumably, to exchange reactions. Electrophoretic analysis revealed that the intersubunit contact made by tryptophan 120 to biotin through the dimer-dimer interface is the major interaction responsible for the biotin-induced, tighter subunit association of streptavidin. In addition, the mutant has weaker subunit association than natural streptavidin even in the absence of biotin, indicating that tryptophan 120 also contributes to the subunit association of tetramers in the absence of biotin.