21 resultados para anomalous origin of the left coronary artery

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human adult α-globin locus consists of three pairs of homology blocks (X, Y, and Z) interspersed with three nonhomology blocks (I, II, and III), and three Alu family repeats, Alu1, Alu2, and Alu3. It has been suggested that an ancient primate α-globin-containing unit was ancestral to the X, Y, and Z and the Alu1/Alu2 repeats. However, the evolutionary origin of the three nonhomologous blocks has remained obscure. We have now analyzed the sequence organization of the entire adult α-globin locus of gibbon (Hylobates lar). DNA segments homologous to human block I occur in both duplication units of the gibbon α-globin locus. Detailed interspecies sequence comparisons suggest that nonhomologous blocks I and II, as well as another sequence, IV, were all part of the ancestral α-globin-containing unit prior to its tandem duplication. However, sometime thereafter, block I was deleted from the human α1-globin-containing unit, and block II was also deleted from the α2-globin-containing unit in both human and gibbon. These were probably independent events both mediated by independent illegitimate recombination processes. Interestingly, the end points of these deletions coincide with potential insertion sites of Alu family repeats. These results suggest that the shaping of DNA segments in eukaryotic genomes involved the retroposition of repetitive DNA elements in conjunction with simple DNA recombination processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linguistic evidence indicates that the Yeniseian family of languages, spoken in central Siberia, is most closely related to the Na-Dene family of languages spoken, for the most part, in northwestern North America. This hypothesis locates the source of one of the three migrations responsible for the peopling of the Americas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of the progenitors of plants endemic to oceanic islands often is complicated by extreme morphological divergence between island and continental taxa. This is especially true for the Hawaiian Islands, which are 3,900 km from any continental source. We examine the origin of Hesperomannia, a genus of three species endemic to Hawaii that always have been placed in the tribe Mutisieae of the sunflower family. Phylogenetic analyses of representatives from all tribes in this family using the chloroplast gene ndhF (where ndhF is the ND5 protein of chloroplast NADH dehydrogenase) indicate that Hesperomannia belongs to the tribe Vernonieae. Phylogenetic comparisons within the Vernonieae using sequences of both ndhF and the internal transcribed spacer regions of nuclear ribosomal DNA reveal that Hesperomannia is sister to African species of Vernonia. Long-distance dispersal northeastward from Africa to southeast Asia and across the many Pacific Ocean island chains is the most likely explanation for this unusual biogeographic connection. The 17- to 26-million-year divergence time between African Vernonia and Hesperomannia estimated by the DNA sequences predates the age of the eight existing Hawaiian Islands. These estimates are consistent with an hypothesis that the progenitor of Hesperomannia arrived at one of the low islands of the Hawaiian-Emperor chain between the late Oligocene and mid-Miocene when these islands were above sea level. Subsequent to its arrival the southeast Pacific island chains served as steppingstones for dispersal to the existing Hawaiian Islands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the mechanism of thermodynamic stability of an RNA structure has significant implications for the function and design of RNA. We investigated the equilibrium folding of a thermophilic ribozyme and its mesophilic homologue by using hydroxyl radical protection, small-angle x-ray scattering, and circular dichroism. Both RNAs require Mg2+ to fold to their native structures that are very similar. The stability is measured as a function of Mg2+ and urea concentrations at different temperatures. The enhanced stability of the thermophilic ribozyme primarily is derived from a tremendous increase in the amount of structure formed in the ultimate folding transition. This increase in structure formation and cooperativity arises because the penultimate and the ultimate folding transitions in the mesophilic ribozyme become linked into a single transition in the folding of the thermophilic ribozyme. Therefore, the starting point, or reference state, for the transition to the native, functional thermophilic ribozyme is significantly less structured. The shift in the reference state, and the resulting increase in folding cooperativity, is likely due to the stabilization of selected native interactions that only form in the ultimate transition. This mechanism of using a less structured intermediate and increased cooperativity to achieve higher functional stability for tertiary RNAs is fundamentally different from that commonly proposed to explain the increased stability of thermophilic proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adult body plan of bilaterians is achieved by imposing regional specifications on pluripotential cells. The establishment of spatial domains is governed in part by regulating expression of transcription factors. The key to understanding bilaterian evolution is contingent on our understanding of how the regulation of these transcription factors influenced bilaterian stem-group evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium “Thiodendron latens.” By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This “earliest branching protist” that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since most of the examples of "exon shuffling" are between vertebrate genes, the view is often expressed that exon shuffling is limited to the evolutionarily recent lineage of vertebrates. Although exon shuffling in plants has been inferred from the analysis of intron phases of plant genes [Long, M., Rosenberg, C. & Gilbert, W. (1995) Proc. Natl. Acad. Sci. USA 92, 12495-12499] and from the comparison of two functionally unknown sunflower genes [Domon, C. & Steinmetz, A. (1994) Mol. Gen. Genet. 244, 312-317], clear cases of exon shuffling in plant genes remain to be uncovered. Here, we report an example of exon shuffling in two important nucleus-encoded plant genes: cytosolic glyceraldehyde-3-phosphate dehydrogenase (cytosolic GAPDH or GapC) and cytochrome c1 precursor. The intron-exon structures of the shuffled region indicate that the shuffling event took place at the DNA sequence level. In this case, we can establish a donor-recipient relationship for the exon shuffling. Three amino terminal exons of GapC have been donated to cytochrome c1, where, in a new protein environment, they serve as a source of the mitochondrial targeting function. This finding throws light upon an old important but unsolved question in gene evolution: the origin of presequences or transit peptides that generally exist in nucleus-encoded organelle genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a simple antiplane fault of finite length embedded in a homogeneous isotropic elastic solid to understand the origin of seismic source heterogeneity in the presence of nonlinear rate- and state-dependent friction. All the mechanical properties of the medium and friction are assumed homogeneous. Friction includes a characteristic length that is longer than the grid size so that our models have a well-defined continuum limit. Starting from a heterogeneous initial stress distribution, we apply a slowly increasing uniform stress load far from the fault and we simulate the seismicity for a few 1000 events. The style of seismicity produced by this model is determined by a control parameter associated with the degree of rate dependence of friction. For classical friction models with rate-independent friction, no complexity appears and seismicity is perfectly periodic. For weakly rate-dependent friction, large ruptures are still periodic, but small seismicity becomes increasingly nonstationary. When friction is highly rate-dependent, seismicity becomes nonperiodic and ruptures of all sizes occur inside the fault. Highly rate-dependent friction destabilizes the healing process producing premature healing of slip and partial stress drop. Partial stress drop produces large variations in the state of stress that in turn produce earthquakes of different sizes. Similar results have been found by other authors using the Burridge and Knopoff model. We conjecture that all models in which static stress drop is only a fraction of the dynamic stress drop produce stress heterogeneity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first known members of the order Artiodactyla appeared suddenly throughout the Holarctic region at the beginning of the Eocene. They are characterized by distinctive cursorial skeletal specializations. Owing to their abrupt appearance and the lack of transitional forms, the origin of the order is problematic. Descent from a "condylarth," specifically the arctocyonid Chriacus, has been suggested based on dental resemblances, but until now postcranial anatomy seemed to preclude close relationship between Arctocyonidae and Artiodactyla. A middle Paleocene specimen of a small arctocyonid (?Chriacus) reported here is much more similar to the oldest artiodactyl, Diacodexis, in the derived condition of the hindlimb, reviving the possibility that Artiodactyla evolved from an arctocyonid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of the approximately 380 families of angiosperms, representatives of only 10 are known to form symbiotic associations with nitrogen-fixing bacteria in root nodules. The morphologically based classification schemes proposed by taxonomists suggest that many of these 10 families of plants are only distantly related, engendering the hypothesis that the capacity to fix nitrogen evolved independently several, if not many, times. This has in turn influenced attitudes toward the likelihood of transferring genes responsible for symbiotic nitrogen fixation to crop species lacking this ability. Phylogenetic analysis of DNA sequences for the chloroplast gene rbcL indicates, however, that representatives of all 10 families with nitrogen-fixing symbioses occur together, with several families lacking this association, in a single clade. This study therefore indicates that only one lineage of closely related taxa achieved the underlying genetic architecture necessary for symbiotic nitrogen fixation in root nodules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the origin of the Pto disease resistance (R) gene that was previously identified in the wild tomato species Lycopersicon pimpinellifolium and isolated by map-based cloning. Pto encodes a serine-threonine protein kinase that specifically recognizes strains of Pseudomonas syringae pv. tomato (Pst) that express the avirulence gene avrPto. We examined an accession of the distantly related wild species Lycopersicon hirsutum var. glabratum that exhibits avrPto-specific resistance to Pst. The Pst resistance of L. hirsutum was introgressed into a susceptible Lycopersicon esculentum background to create the near-isogenic line 96T133-3. Resistance to Pst(avrPto) in 96T133-3 was inherited as a single dominant locus and cosegregated with a restriction fragment length polymorphism detected by the Pto gene. This observation suggested that a member of the Pto gene family confers Pst(avrPto) resistance in this L. hirsutum line. Here we report the cloning and characterization of four members of the Pto family from 96T133-3. One gene (LhirPto) is 97% identical to Pto and encodes a catalytically active protein kinase that elicits a hypersensitive response when coexpressed with avrPto in leaves of Nicotiana benthamiana. In common with the Pto kinase, the LhirPto protein physically interacts with AvrPto and downstream members of the Pto signaling pathway. Our studies indicate that R genes of the protein kinase class may not evolve rapidly in response to pathogen pressure and rather that their ability to recognize specific Avr proteins can be highly conserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of O2-producing cyanobacteria that use water as terminal reductant transformed Earth's atmosphere to one suitable for the evolution of aerobic metabolism and complex life. The innovation of water oxidation freed photosynthesis to invade new environments and visibly changed the face of the Earth. We offer a new hypothesis for how this process evolved, which identifies two critical roles for carbon dioxide in the Archean period. First, we present a thermodynamic analysis showing that bicarbonate (formed by dissolution of CO2) is a more efficient alternative substrate than water for O2 production by oxygenic phototrophs. This analysis clarifies the origin of the long debated “bicarbonate effect” on photosynthetic O2 production. We propose that bicarbonate was the thermodynamically preferred reductant before water in the evolution of oxygenic photosynthesis. Second, we have examined the speciation of manganese(II) and bicarbonate in water, and find that they form Mn-bicarbonate clusters as the major species under conditions that model the chemistry of the Archean sea. These clusters have been found to be highly efficient precursors for the assembly of the tetramanganese-oxide core of the water-oxidizing enzyme during biogenesis. We show that these clusters can be oxidized at electrochemical potentials that are accessible to anoxygenic phototrophs and thus the most likely building blocks for assembly of the first O2 evolving photoreaction center, most likely originating from green nonsulfur bacteria before the evolution of cyanobacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The TEL (ETV6)−AML1 (CBFA2) gene fusion is the most common reciprocal chromosomal rearrangement in childhood cancer occurring in ≈25% of the most predominant subtype of leukemia— common acute lymphoblastic leukemia. The TEL-AML1 genomic sequence has been characterized in a pair of monozygotic twins diagnosed at ages 3 years, 6 months and 4 years, 10 months with common acute lymphoblastic leukemia. The twin leukemic DNA shared the same unique (or clonotypic) but nonconstitutive TEL-AML1 fusion sequence. The most plausible explanation for this finding is a single cell origin of the TEL-AML fusion in one fetus in utero, probably as a leukemia-initiating mutation, followed by intraplacental metastasis of clonal progeny to the other twin. Clonal identity is further supported by the finding that the leukemic cells in the two twins shared an identical rearranged IGH allele. These data have implications for the etiology and natural history of childhood leukemia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friedreich’s ataxia, the most frequent inherited ataxia, is caused, in the vast majority of cases, by large GAA repeat expansions in the first intron of the frataxin gene. The normal sequence corresponds to a moderately polymorphic trinucleotide repeat with bimodal size distribution. Small normal alleles have approximately eight to nine repeats whereas a more heterogeneous mode of large normal alleles ranges from 16 to 34 GAA. The latter class accounts for ≈17% of normal alleles. To identify the origin of the expansion mutation, we analyzed linkage disequilibrium between expansion mutations or normal alleles and a haplotype of five polymorphic markers within or close to the frataxin gene; 51% of the expansions were associated with a single haplotype, and the other expansions were associated with haplotypes that could be related to the major one by mutation at a polymorphic marker or by ancient recombination. Of interest, the major haplotype associated with expansion is also the major haplotype associated with the larger alleles in the normal size range and was almost never found associated with the smaller normal alleles. The results indicate that most if not all large normal alleles derive from a single founder chromosome and that they represent a reservoir for larger expansion events, possibly through “premutation” intermediates. Indeed, we found two such alleles (42 and 60 GAA) that underwent cataclysmic expansion to pathological range in a single generation. This stepwise evolution to large trinucleotide expansions already was suggested for myotonic dystrophy and fragile X syndrome and may relate to a common mutational mechanism, despite sequence motif differences.