4 resultados para animal precision production

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70–80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little is known about the potential for engraftment of autologous hematopoietic stem cells in human adults not subjected to myeloablative conditioning regimens. Five adult patients with the p47phox deficiency form of chronic granulomatous disease received intravenous infusions of autologous CD34+ peripheral blood stem cells (PBSCs) that had been transduced ex vivo with a recombinant retrovirus encoding normal p47phox. Although marrow conditioning was not given, functionally corrected granulocytes were detectable in peripheral blood of all five patients. Peak correction occurred 3–6 weeks after infusion and ranged from 0.004 to 0.05% of total peripheral blood granulocytes. Corrected cells were detectable for as long as 6 months after infusion in some individuals. Thus, prolonged engraftment of autologous PBSCs and continued expression of the transduced gene can occur in adults without conditioning. This trial also piloted the use of animal protein-free medium and a blood-bank-compatible closed system of gas-permeable plastic containers for culture and transduction of the PBSCs. These features enhance the safety of PBSCs directed gene therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In leaves of Egeria densa Planchon, N-ethylmaleimide (NEM) and other sulfhydryl-binding reagents induce a temporary increase in nonmitochondrial respiration (ΔQO2) that is inhibited by diphenylene iodonium and quinacrine, two known inhibitors of the plasma membrane NADPH oxidase, and are associated with a relevant increase in electrolyte leakage (M. Bellando, S. Sacco, F. Albergoni, P. Rocco, M.T. Marré [1997] Bot Acta 110: 388–394). In this paper we report data indicating further analogies between the oxidative burst induced by sulfhydryl blockers in E. densa and that induced by pathogen-derived elicitors in animal and plant cells: (a) NEM- and Ag+-induced ΔQO2 was associated with H2O2 production and both effects depended on the presence of external Ca2+; (b) Ca2+ influx was markedly increased by treatment with NEM; (c) the Ca2+ channel blocker LaCl3 inhibited ΔQO2, electrolyte release, and membrane depolarization induced by the sulfhydryl reagents; and (d) LaCl3 also inhibited electrolyte leakage induced by the direct infiltration of the leaves with H2O2. These results suggest a model in which the interaction of sulfhydryl blockers with sulfhydryl groups of cell components would primarily induce an increase in the Ca2+ cytosolic concentration, followed by membrane depolarization and activation of a plasma membrane NADPH oxidase. This latter effect, producing active oxygen species, might further influence plasma membrane permeability, leading to the massive release of electrolytes from the tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estradiol is known to exert a protective effect against the development of atherosclerosis, but the mechanism by which this protection is mediated is unclear. Since animal studies strongly suggest that production of endothelium-derived relaxing factor is enhanced by estradiol, we have examined the effect of estrogens on nitric oxide (NO) synthase (NOS) activity, protein, and mRNA in cultured bovine aortic endothelial cells. In reporter cells rich in guanylate cyclase, it has been observed that long-term treatment (> or = 24 hr) with ethinylestradiol (EE2) dose-dependently increased guanylate cyclase-activating factor activity in the conditioned medium of endothelial cells. However, conversion of L-[14C]arginine to L-[14C]citrulline by endothelial cell homogenate or quantification of nitrite and nitrate released by intact cells in the conditioned medium did not reveal any change in NOS activity induced by EE2 treatment. Similarly, Western and Northern blot analyses did not reveal any change in the endothelial NOS protein and mRNA content in response to EE2. However, EE2 dose- and time-dependently decreased superoxide anion production in the conditioned medium of endothelial cells with an EC50 value (0.1 nM) close to that which increased guanylate cyclase-activating factor activity (0.5 nM). Both of these effects were completely prevented by the antiestrogens tamoxifen and RU54876. Thus, endothelium exposure to estrogens appears to induce a receptor-mediated antioxidant effect that enhances the biological activity of endothelium-derived NO. These effects could account at least in part for the vascular protective properties of these hormones.