49 resultados para angiotensin AT(1) antagonist

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The renin-angiotensin system plays a crucial role in the development and establishment of the hypertensive state in the spontaneously hypertensive (SH) rat. Interruption of this system's activity by pharmacological means results in the lowering of blood pressure (BP) and control of hypertension. However, such means are temporary and require the continuous use of drugs for the control of this pathophysiological state. Our objective in this investigation was to determine if a virally mediated gene-transfer approach using angiotensin type 1 receptor antisense (AT1R-AS) could be used to control hypertension on a long-term basis in the SH rat model of human essential hypertension. Injection of viral particles containing AT1R-AS (LNSV-AT1R-AS) in 5-day-old rats resulted in a lowering of BP exclusively in the SH rat and not in the Wistar Kyoto normotensive control. A maximal anti-hypertensive response of 33 +/- 5 mmHg was observed, was maintained throughout development, and still persisted 3 months after administration of LNSV-AT1R-AS. The lowering of BP was associated with the expression of AT1R-AS transcript and decreases in AT1-receptor in many peripheral angiotensin II target tissues such as mesenteric artery, adrenal gland, heart, and kidney. Attenuation of angiotensin II-stimulated physiological actions such as contraction of aortic rings and increase in BP was also observed in the LNSV-AT1R-AS-treated SH rat. These observations show that a single injection of LNSV-AT1R-AS normalizes BP in the SH rat on a long-term basis. They suggest that such a gene-transfer strategy can be successfully used to control the development of hypertension on a permanent basis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

P-glycoprotein (MDR-1) is a well-known transporter that mediates efflux of chemotherapeutic agents from the intracellular milieu and thereby contributes to drug resistance. MDR-1 also is expressed by nonmalignant cells, including leukocytes, but physiologic functions for MDR-1 are poorly defined. Using an initial screening assay that included >100 mAbs, we observed that neutralizing mAbs MRK16, UIC2, and 4E3 against MDR-1 specifically and potently blocked basal-to-apical transendothelial migration of mononuclear phagocytes, a process that may mimic their migration into lymphatic vessels. Antagonists of MDR-1 then were used in a model of authentic lymphatic clearance. In this model, antigen-presenting dendritic cells (DC) migrate out of explants of cultured human skin and into the culture medium via dermal lymphatic vessels. DC and T cells derived from skin expressed MDR-1 on their surfaces. Addition of anti-MDR-1 mAbs MRK16, UIC2, or the MDR-1 antagonist verapamil to skin explants at the onset of culture inhibited the appearance of DC, and accompanying T cells, in the culture medium by approximately 70%. Isotype-matched control mAbs against other DC molecules including CD18, CD31, and major histocompatibility complex I did not block. In the presence of MDR-1 antagonists, epidermal DC were retained in the epidermis, in contrast to control conditions. In summary, this work identifies a physiologic function for MDR-1 during the mobilization of DC and begins to elucidate how these critical antigen-presenting cells migrate from the periphery to lymph nodes to initiate T lymphocyte-mediated immunity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protease-activated receptors (PARs) represent a unique family of seven-transmembrane G protein-coupled receptors, which are enzymatically cleaved to expose a truncated extracellular N terminus that acts as a tethered activating ligand. PAR-1 is cleaved and activated by the serine protease α-thrombin, is expressed in various tissues (e.g., platelets and vascular cells), and is involved in cellular responses associated with hemostasis, proliferation, and tissue injury. We have discovered a series of potent peptide-mimetic antagonists of PAR-1, exemplified by RWJ-56110. Spatial relationships between important functional groups of the PAR-1 agonist peptide epitope SFLLRN were employed to design and synthesize candidate ligands with appropriate groups attached to a rigid molecular scaffold. Prototype RWJ-53052 was identified and optimized via solid-phase parallel synthesis of chemical libraries. RWJ-56110 emerged as a potent, selective PAR-1 antagonist, devoid of PAR-1 agonist and thrombin inhibitory activity. It binds to PAR-1, interferes with PAR-1 calcium mobilization and cellular function (platelet aggregation; cell proliferation), and has no effect on PAR-2, PAR-3, or PAR-4. By flow cytometry, RWJ-56110 was confirmed as a direct inhibitor of PAR-1 activation and internalization, without affecting N-terminal cleavage. At high concentrations of α-thrombin, RWJ-56110 fully blocked activation responses in human vascular cells, albeit not in human platelets; whereas, at high concentrations of SFLLRN-NH2, RWJ-56110 blocked activation responses in both cell types. Thus, thrombin activates human platelets independently of PAR-1, i.e., through PAR-4, which we confirmed by PCR analysis. Selective PAR-1 antagonists, such as RWJ-56110, should serve as useful tools to study PARs and may have therapeutic potential for treating thrombosis and restenosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Overactivity of the brain renin-angiotensin system (RAS) has been implicated in the development and maintenance of hypertension in several experimental models, such as spontaneously hypertensive rats and transgenic mice expressing both human renin and human angiotensinogen transgenes. We recently reported that, in the murine brain, angiotensin II (AngII) is converted to angiotensin III (AngIII) by aminopeptidase A (APA), whereas AngIII is inactivated by aminopeptidase N (APN). If injected into cerebral ventricles (ICV), AngII and AngIII cause similar pressor responses. Because AngII is metabolized in vivo into AngIII, the exact nature of the active peptide is not precisely determined. Here we report that, in rats, ICV injection of the selective APA inhibitor EC33 [(S)-3-amino-4-mercaptobutyl sulfonic acid] blocked the pressor response of exogenous AngII, suggesting that the conversion of AngII to AngIII is required to increase blood pressure (BP). Furthermore, ICV injection, but not i.v. injection, of EC33 alone caused a dose-dependent decrease in BP by blocking the formation of brain but not systemic AngIII. This is corroborated by the fact that the selective APN inhibitor, PC18 (2-amino-4-methylsulfonyl butane thiol), administered alone via the ICV route, increases BP. This pressor response was blocked by prior treatment with the angiotensin type 1 (AT1) receptor antagonist, losartan, showing that blocking the action of APN on AngIII metabolism leads to an increase in endogenous AngIII levels, resulting in BP increase, through interaction with AT1 receptors. These data demonstrate that AngIII is a major effector peptide of the brain RAS, exerting tonic stimulatory control over BP. Thus, APA, the enzyme responsible for the formation of brain AngIII, represents a potential central therapeutic target that justifies the development of APA inhibitors as central antihypertensive agents.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Mutational analysis based on the pharmacological differences between mammalian and amphibian angiotensin II receptors (AT receptors) previously identified 7 aa residues located in transmembrane domains (TMs) III (Val-108), IV (Ala-163), V (Pro-192, Thr-198), VI (Ser-252), and VII (Leu-300, Phe-301) of the rat AT receptor type 1b (rAT1b receptor) that significantly influenced binding of the nonpeptide antagonist Losartan. Further studies have shown that an additional 6 residues in the rAT1b receptor TMs II (Ala-73), III (Ser-109, Ala-114, Ser-115), VI (Phe-248), and VII (Asn-295) are important in Losartan binding. The 13 residues required for Losartan binding in the mammalian receptor were exchanged for the corresponding amino acids in the Xenopus AT receptor type a (xATa receptor) to generate a mutant amphibian receptor that bound Losartan with the same affinity as the rAT1b receptor (Losartan IC50 values: rAT1b, 2.2 +/- 0.2 nM: xATa, > 50 microM; mutant, 2.0 +/- 0.1 nM). To our knowledge, this is the first report of a gain-of-function mutant in which the residues crucial to formation of a ligand binding site in a mammalian peptide hormone receptor were transferred to a previously unresponsive receptor by site-directed mutagenesis. Ala substitutions and comparison of mammalian and amphibian combinatorial mutants indicated that TM III in the rAT1b receptor plays a key role in Losartan binding. Identification of residues involved in nonpeptide ligand binding will facilitate studies aimed at elucidating the chemical basis for ligand recognition in the AT receptor and peptide hormone receptors in general.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is not known how human immunodeficiency virus type 1 (HIV-1)-derived antagonist peptides interfere with intracellular activation of cytotoxic T lymphocytes (CTL). We identified Gag epitope variants in HIV-1-infected patients that act as antagonists of CTL responses to unmutated epitopes. We then investigated the effect that presentation of each variant has on the early events of T cell receptor (TCR) signal transduction. We found that altered peptide ligands (APL) failed to induce phosphorylation of pp36, a crucial adaptor protein involved in TCR signal transduction. We further investigated the effect that simultaneous presentation of APL and native antigen at low, physiological, peptide concentrations (1 nM) has on TCR signal transduction, and we found that the presence of APL can completely inhibit induction of the protein tyrosine phosphorylation events of the TCR signal transduction cascade.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding the mechanism for sucrose-induced protein stabilization is important in many diverse fields, ranging from biochemistry and environmental physiology to pharmaceutical science. Timasheff and Lee [Lee, J. C. & Timasheff, S. N. (1981) J. Biol. Chem. 256, 7193–7201] have established that thermodynamic stabilization of proteins by sucrose is due to preferential exclusion of the sugar from the protein’s surface, which increases protein chemical potential. The current study measures the preferential exclusion of 1 M sucrose from a protein drug, recombinant interleukin 1 receptor antagonist (rhIL-1ra). It is proposed that the degree of preferential exclusion and increase in chemical potential are directly proportional to the protein surface area and that, hence, the system will favor the protein state with the smallest surface area. This mechanism explains the observed sucrose-induced restriction of rhIL-1ra conformational fluctuations, which were studied by hydrogen–deuterium exchange and cysteine reactivity measurements. Furthermore, infrared spectroscopy of rhlL-1ra suggested that a more ordered native conformation is induced by sucrose. Electron paramagnetic resonance spectroscopy demonstrated that in the presence of sucrose, spin-labeled cysteine 116 becomes more buried in the protein’s interior and that the hydrodynamic diameter of the protein is reduced. The preferential exclusion of sucrose from the protein and the resulting shift in the equilibrium between protein states toward the most compact conformation account for sucrose-induced effects on rhIL-1ra.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hypertrophy of mammalian cardiac muscle is mediated, in part, by angiotensin II through an angiotensin II type1a receptor (AT1aR)-dependent mechanism. To understand how the level of AT1aRs is altered in this pathological state, we studied the expression of an injected AT1aR promoter-luciferase reporter gene in adult rat hearts subjected to an acute pressure overload by aortic coarctation. This model was validated by demonstrating that coarctation increased expression of the α-skeletal actin promoter 1.7-fold whereas the α-myosin heavy chain promoter was unaffected. Pressure overload increased expression from the AT1aR promoter by 1.6-fold compared with controls. Mutations introduced into consensus binding sites for AP-1 or GATA transcription factors abolished the pressure overload response but had no effect on AT1aR promoter activity in control animals. In extracts from coarcted hearts, but not from control hearts, a Fos-JunB-JunD complex and GATA-4 were detected in association with the AP-1 and GATA sites, respectively. These results establish that the AT1aR promoter is active in cardiac muscle and its expression is induced by pressure overload, and suggest that this response is mediated, in part, by a functional interaction between AP-1 and GATA-4 transcription factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In bovine adrenal medullary cells synergistically acting type 1 and type 2 angiotensin II (AII) receptors activate the fibroblast growth factor-2 (FGF-2) gene through a unique AII-responsive promoter element. Both the type 1 and type 2 AII receptors and the downstream cyclic adenosine 1′,3′-monophosphate- and protein kinase C-dependent signaling pathways activate the FGF-2 promoter through a novel signal-transducing mechanism. This mechanism, which we have named integrative nuclear FGF receptor-1 signaling, involves the nuclear translocation of FGF receptor-1 and its subsequent transactivation of the AII-responsive element in the FGF-2 promoter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Substance P (SP) is a potent modulator of neuroimmunoregulation. We recently reported that human immune cells express SP and its receptor. We have now investigated the possible role that SP and its receptor plays in HIV infection of human mononuclear phagocytes. SP enhanced HIV replication in human blood-isolated mononuclear phagocytes, whereas the nonpeptide SP antagonist (CP-96,345) potently inhibited HIV infectivity of these cells in a concentration-dependent fashion. CP-96,345 prevented the formation of typical giant syncytia induced by HIV Bal strain replication in these cells. This inhibitory effect of CP-96,345 was because of the antagonism of neurokinin-1 receptor, a primary SP receptor. Both CP-96,345 and anti-SP antibody inhibited SP-enhanced HIV replication in monocyte-derived macrophages (MDM). Among HIV strains tested (both prototype and primary isolates), only the R5 strains (Bal, ADA, BL-6, and CSF-6) that use the CCR5 coreceptor for entry into MDM were significantly inhibited by CP-96,345; in contrast, the X4 strain (UG024), which uses CXCR4 as its coreceptor, was not inhibited. In addition, the M-tropic ADA (CCR5-dependent)-pseudotyped HIV infection of MDM was markedly inhibited by CP-96,345, whereas murine leukemia virus-pseudotyped HIV was not affected, indicating that the major effect of CP-96,345 is regulated by Env-determined early events in HIV infection of MDM. CP-96,345 significantly down-regulated CCR5 expression in MDM at both protein and mRNA levels. Thus, SP–neurokinin-1 receptor interaction may play an important role in the regulation of CCR5 expression in MDM, affecting the R5 HIV strain infection of MDM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Angiotensin (Ang) II and Ang III are two peptide effectors of the brain renin-angiotensin system that participate in the control of blood pressure and increase water consumption and vasopressin release. In an attempt to delineate the respective roles of these peptides in the regulation of vasopressin secretion, their metabolic pathways and their effects on vasopressin release were identified in vivo. For this purpose, we used recently developed selective inhibitors of aminopeptidase A (APA) and aminopeptidase N (APN), two enzymes that are believed to be responsible for the N-terminal cleavage of Ang II and Ang III, respectively. Mice received [3H]Ang II intracerebroventricularly (i.c.v.) in the presence or absence of the APN inhibitor, EC33 (3-amino-4-thio-butyl sulfonate) of the APN inhibitor, EC27 (2-amino-pentan-1,5-dithiol). [3H]Ang II and [3H]Ang III levels were evaluated from hypothalamus homogenates by HPLC. EC33 increased the half-life of [3H]Ang II 2.6-fold and completely blocked the formation of [3H]Ang III, whereas EC27 increased the half-life of [3H]Ang III 2.3-fold. In addition, the effects of EC33 and EC27 on Ang-induced vasopressin release were studied in mice. Ang II was injected i.c.v. in the presence or absence of EC33, and plasma vasopressin levels were estimated by RIA. While vasopressin levels were increased 2-fold by Ang II (5 ng), EC33 inhibited Ang II-induced vasopressin release in a dose-dependent manner. In contrast, EC27 injected alone increased in a dose-dependent manner vasopressin levels. The EC27-induced vasopressin release was completely blocked by the coadministration of the Ang receptor antagonist (Sar1-Ala8) Ang II. These results demonstrate for the first time that (i) APA and APN are involved in vivo in the metabolism of brain Ang II and Ang III, respectively, and that (ii) the action of Ang II on vasopressin release depends upon the prior conversion of Ang II to Ang III. This shows that Ang III behaves as one of the main effector peptides of the brain renin-angiotensin system in the control of vasopressin release.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interleukin 1 receptor antagonist (IL-1ra) is a cytokine whose only known action is competitive inhibition of the binding of interleukin 1 (IL-1) to its receptor. To investigate the physiological roles of endogenously produced IL-1ra, we generated mice that either lack IL-1ra or overproduce it under control of the endogenous promoter. Mice lacking IL-1ra have decreased body mass compared with wild-type controls. They are more susceptible than controls to lethal endotoxemia but are less susceptible to infection with Listeria monocytogenes. Conversely, IL-1ra overproducers are protected from the lethal effects of endotoxin but are more susceptible to listeriosis. Serum levels of IL-1 following an endotoxin challenge are decreased in IL-1ra nulls and increased in IL-1ra overproducers in comparison to controls. These data demonstrate critical roles for endogenously produced IL-1ra in growth, responses to infection and inflammation, and regulation of cytokine expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Restoration of the impaired balance between pro- and antiinflammatory cytokines should provide effective treatment of rheumatoid arthritis. Gene therapy has been proposed as an approach for delivery of therapeutic proteins to arthritic joints. Here, we examined the efficacy of antiinflammatory gene therapy in bacterial cell wall-induced arthritis in rats. Human secreted interleukin 1 receptor antagonist (sIL-1ra) was expressed in joints of rats with recurrent bacterial cell wall-induced arthritis by using ex vivo gene transfer. To achieve this, primary synoviocytes were transduced in culture with a retroviral vector carrying the sIL-1ra cDNA. Transduced cells were engrafted in ankle joints of animals prior to reactivation of arthritis. Animals in control groups were engrafted with synoviocytes transduced with lacZ and neo marker genes. Cells continued to express transferred genes for at least 9 days after engraftment. We found that gene transfer of sIL-1ra significantly suppressed the severity of recurrence of arthritis, as assessed by measuring joint swelling and by the gross-observation score, and attenuated but did not abolish erosion of cartilage and bone. The effect of intraarticularly expressed sIL-1ra was essentially local, as there was no significant difference in severity of recurrence between unengrafted contralateral joints in control and experimental groups. We estimate that locally expressed sIL-1ra was about four orders of magnitude more therapeutically efficient than systemically administered recombinant sIL-1ra protein. These findings provide experimental evidence for the feasibility of antiinflammatory gene therapy for arthritis.