3 resultados para analytical method
em National Center for Biotechnology Information - NCBI
Resumo:
Whole-genome duplication approximately 108 years ago was proposed as an explanation for the many duplicated chromosomal regions in Saccharomyces cerevisiae. Here we have used computer simulations and analytic methods to estimate some parameters describing the evolution of the yeast genome after this duplication event. Computer simulation of a model in which 8% of the original genes were retained in duplicate after genome duplication, and 70–100 reciprocal translocations occurred between chromosomes, produced arrangements of duplicated chromosomal regions very similar to the map of real duplications in yeast. An analytical method produced an independent estimate of 84 map disruptions. These results imply that many smaller duplicated chromosomal regions exist in the yeast genome in addition to the 55 originally reported. We also examined the possibility of determining the original order of chromosomal blocks in the ancestral unduplicated genome, but this cannot be done without information from one or more additional species. If the genome sequence of one other species (such as Kluyveromyces lactis) were known it should be possible to identify 150–200 paired regions covering the whole yeast genome and to reconstruct approximately two-thirds of the original order of blocks of genes in yeast. Rates of interchromosome translocation in yeast and mammals appear similar despite their very different rates of homologous recombination per kilobase.
Resumo:
Phylogenetic analysis of ribosomal RNA sequences obtained from uncultivated organisms of a hot spring in Yellowstone National Park reveals several novel groups of Archaea, many of which diverged from the crenarchaeal line of descent prior to previously characterized members of that kingdom. Universal phylogenetic trees constructed with the addition of these sequences indicate monophyly of Archaea, with modest bootstrap support. The data also show a specific relationship between low-temperature marine Archaea and some hot spring Archaea. Two of the environmental sequences are enigmatic: depending upon the data set and analytical method used, these sequences branch deeply within the Crenarchaeota, below the bifurcation between Crenarchaeota and Euryarchaeota, or even as the sister group to Eukaryotes. If additional data confirm either of the latter two placements, then the organisms represented by these ribosomal RNA sequences would merit recognition as a new kingdom, provisionally named "Korarchaeota."
Resumo:
We report the isolation of 10 differentially expressed cDNAs in the process of apoptosis induced by the p53 tamor suppressor. As a global analytical method, we performed a differential display of mRNA between mouse M1 myeloid leukemia cells and derived clone LTR6 cells, which contain a stably transfected temperature-sensitive mutant of p53. At 32 degrees C wild-type p53 function is activated in LTR6 cells, resulting in programmed cell death. Eight genes are activated (TSAP; tumor suppressor activated pathway), and two are inhibited (TSIP, tumor suppressor inhibited pathway) in their expression. None of the 10 sequences has hitherto been recognized as part of the p53 signaling pathway. Three TSAPs are homologous to known genes. TSAP1 corresponds to phospholipase C beta 4. TSAP2 has a conserved domain homologous to a multiple endocrine neoplasia I (ZFM1) candidate gene. TSAP3 is the mouse homologue of the Drosophila seven in absentia gene. These data provide novel molecules involved in the pathway of wild-type p53 activation. They establish a functional link between a homologue of a conserved developmental Drosophila gene and signal transduction in tumor suppression leading to programmed cell death.