89 resultados para allelic origin

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The GNAS1 gene encodes the α subunit of the guanine nucleotide-binding protein Gs, which couples signaling through peptide hormone receptors to cAMP generation. GNAS1 mutations underlie the hormone resistance syndrome pseudohypoparathyroidism type Ia (PHP-Ia), so the maternal inheritance displayed by PHP-Ia has raised suspicions that GNAS1 is imprinted. Despite this suggestion, in most tissues Gsα is biallelically encoded. In contrast, the large G protein XLαs, also encoded by GNAS1, is paternally derived. Because the inheritance of PHP-Ia predicts the existence of maternally, rather than paternally, expressed transcripts, we have investigated the allelic origin of other mRNAs derived from GNAS1. We find this gene to be remarkable in the complexity of its allele-specific regulation. Two upstream promoters, each associated with a large coding exon, lie only 11 kb apart, yet show opposite patterns of allele-specific methylation and monoallelic transcription. The more 5′ of these exons encodes the neuroendocrine secretory protein NESP55, which is expressed exclusively from the maternal allele. The NESP55 exon is 11 kb 5′ to the paternally expressed XLαs exon. The transcripts from these two promoters both splice onto GNAS1 exon 2, yet share no coding sequences. Despite their structural unrelatedness, the encoded proteins, of opposite allelic origin, both have been implicated in regulated secretion in neuroendocrine tissues. Remarkably, maternally (NESP55), paternally (XLαs), and biallelically (Gsα) derived proteins all are produced by different patterns of promoter use and alternative splicing of GNAS1, a gene showing simultaneous imprinting in both the paternal and maternal directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A better understanding of Mycobacterium tuberculosis virulence mechanisms is highly dependent on the design of efficient mutagenesis systems. A system enabling the positive selection of insertional mutants having lost the delivery vector was developed. It uses ts-sacB vectors, which combine the counterselective properties of the sacB gene and a mycobacterial thermosensitive origin of replication and can therefore be efficiently counterselected on sucrose at 39°C. This methodology allowed the construction of M. tuberculosis transposition mutant libraries. Greater than 106 mutants were obtained, far exceeding the number theoretically required to obtain at least one insertion in every nonessential gene. This system is also efficient for gene exchange mutagenesis as demonstrated with the purC gene: 100% of the selected clones were allelic exchange mutants. Therefore, a single, simple methodology has enabled us to develop powerful mutagenesis systems, the lack of which was a major obstacle to the genetic characterization of M. tuberculosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A recent criticism that the biological species concept (BSC) unduly neglects phylogeny is examined under a novel modification of coalescent theory that considers multiple, sex-defined genealogical pathways through sexual organismal pedigrees. A competing phylogenetic species concept (PSC) also is evaluated from this vantage. Two analytical approaches are employed to capture the composite phylogenetic information contained within the braided assemblages of hereditary pathways of a pedigree: (i) consensus phylogenetic trees across allelic transmission routes and (ii) composite phenograms from quantitative values of organismal coancestry. Outcomes from both approaches demonstrate that the supposed sharp distinction between biological and phylogenetic species concepts is illusory. Historical descent and reproductive ties are related aspects of phylogeny and jointly illuminate biotic discontinuity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During αβ thymocyte development, clonotype-independent CD3 complexes are expressed at the cell surface before the pre-T cell receptor (TCR). Signaling through clonotype-independent CD3 complexes is required for expression of rearranged TCRβ genes. On expression of a TCRβ polypeptide chain, the pre-TCR is assembled, and TCRβ locus allelic exclusion is established. We investigated the putative contribution of clonotype-independent CD3 complex signaling to TCRβ locus allelic exclusion in mice single-deficient or double-deficient for CD3ζ/η and/or p56lck. These mice display defects in the expression of endogenous TCRβ genes in immature thymocytes, proportional to the severity of CD3 complex malfunction. Exclusion of endogenous TCRβ VDJ (variable, diversity, joining) rearrangements by a functional TCRβ transgene was severely compromised in the single-deficient and double-deficient mutant mice. In contrast to wild-type mice, most of the CD25+ double-negative (DN) thymocytes of the mutant mice failed to express the TCRβ transgene, suggesting defective expression of the TCRβ transgene similar to endogenous TCRβ genes. In the mutant mice, a proportion of CD25+ DN thymocytes that failed to express the transgene expressed endogenous TCRβ polypeptide chains. Many double-positive cells of the mutant mice coexpressed endogenous and transgenic TCRβ chains or more than one endogenous TCRβ chain. The data suggest that signaling through clonotype-independent CD3 complexes may contribute to allelic exclusion of the TCRβ locus by inducing the expression of rearranged TCRβ genes in CD25+ DN thymocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin recognition complex (ORC), first identified in Saccharomyces cerevisiae (sc), is a six-subunit protein complex that binds to DNA origins. Here, we report the identification and cloning of cDNAs encoding the six subunits of the ORC of Schizosaccharomyces pombe (sp). Sequence analyses revealed that spOrc1, 2, and 5 subunits are highly conserved compared with their counterparts from S. cerevisiae, Xenopus, Drosophila, and human. In contrast, both spOrc3 and spOrc6 subunits are poorly conserved. As reported by Chuang and Kelly [(1999) Proc. Natl. Acad. Sci. USA 96, 2656–2661], the C-terminal region of spOrc4 is also conserved whereas the N terminus uniquely contains repeats of a sequence that binds strongly to AT-rich DNA regions. Consistent with this, extraction of S. pombe chromatin with 1 M NaCl, or after DNase I treatment, yielded the six-subunit ORC, whereas extraction with 0.3 M resulted in five-subunit ORC lacking spOrc4p. The spORC can be reconstituted in vitro with all six recombinant subunits expressed in the rabbit reticulocyte system. The association of spOrc4p with the other subunits required the removal of DNA from reaction mixture by DNase I. This suggests that a strong interaction between spOrc4p and DNA can prevent the isolation of the six-subunit ORC. The unique DNA-binding properties of the spORC may contribute to our understanding of the sequence-specific recognition required for the initiation of DNA replication in S. pombe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid mice carrying oncogenic transgenes afford powerful systems for investigating loss of heterozygosity (LOH) in tumors. Here, we apply this approach to a neoplasm of key importance in human medicine: mammary carcinoma. We performed a whole genome search for LOH using the mouse mammary tumor virus/v-Ha-ras mammary carcinoma model in female (FVB/N × Mus musculus castaneus)F1 mice. Mammary tumors developed as expected, as well as a few tumors of a second type (uterine leiomyosarcoma) not previously associated with this transgene. Genotyping of 94 anatomically independent tumors revealed high-frequency LOH (≈38%) for markers on chromosome 4. A marked allelic bias was observed, with M. musculus castaneus alleles almost exclusively being lost. No evidence of genomic imprinting effects was noted. These data point to the presence of a tumor suppressor gene(s) on mouse chromosome 4 involved in mammary carcinogenesis induced by mutant H-ras expression, and for which a significant functional difference may exist between the M. musculus castaneus and FVB/N alleles. Provisional subchromosomal localization of this gene, designated Loh-3, can be made to a distal segment having syntenic correspondence to human chromosome 1p; LOH in this latter region is observed in several human malignancies, including breast cancers. Evidence was also obtained for a possible second locus associated with LOH with less marked allele bias on proximal chromosome 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic screen termed the allelic message display (AMD) was developed for the hunting of imprinted genes. In AMD, differential display PCR is adopted to image allelic expression status of multiple polymorphic transcripts in two parental mouse strains, reciprocal F1 hybrids and pooled backcross progenies. From the displayed patterns, paternally and maternally expressed transcripts can be unequivocally identified. The effectiveness of AMD screening was clearly demonstrated by the identification of a paternally expressed gene Impact on mouse chromosome 18, the predicted product of which belongs to the YCR59c/yigZ hypothetical protein family composed of yeast and bacterial proteins with currently unknown function. In contrast with previous screening methods necessitating positional cloning efforts or generation of parthenogenetic embryos, this approach requires nothing particular but appropriately crossed mice and can be readily applied to any tissues at various developmental stages. Hence, AMD would considerably accelerate the identification of imprinted genes playing pivotal roles in mammalian development and the pathogenesis of various diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vegetable oils that contain fatty acids with conjugated double bonds, such as tung oil, are valuable drying agents in paints, varnishes, and inks. Although several reaction mechanisms have been proposed, little is known of the biosynthetic origin of conjugated double bonds in plant fatty acids. An expressed sequence tag (EST) approach was undertaken to characterize the enzymatic basis for the formation of the conjugated double bonds of α-eleostearic (18:3Δ9cis,11trans,13trans) and α-parinaric (18:4Δ9cis,11trans,13trans,15cis) acids. Approximately 3,000 ESTs were generated from cDNA libraries prepared from developing seeds of Momordica charantia and Impatiens balsamina, tissues that accumulate large amounts of α-eleostearic and α-parinaric acids, respectively. From ESTs of both species, a class of cDNAs encoding a diverged form of the Δ12-oleic acid desaturase was identified. Expression of full-length cDNAs for the Momordica (MomoFadX) and Impatiens (ImpFadX) enzymes in somatic soybean embryos resulted in the accumulation of α-eleostearic and α-parinaric acids, neither of which is present in untransformed soybean embryos. α-Eleostearic and α-parinaric acids together accounted for as much as 17% (wt/wt) of the total fatty acids of embryos expressing MomoFadX. These results demonstrate the ability to produce fatty acid components of high-value drying oils in transgenic plants. These findings also demonstrate a previously uncharacterized activity for Δ12-oleic acid desaturase-type enzymes that we have termed “conjugase.”

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer is a disease that begins with mutation of critical genes: oncogenes and tumor suppressor genes. Our research on carcinogenic aromatic hydrocarbons indicates that depurinating hydrocarbon–DNA adducts generate oncogenic mutations found in mouse skin papillomas (Proc. Natl. Acad. Sci. USA 92:10422, 1995). These mutations arise by mis-replication of unrepaired apurinic sites derived from the loss of depurinating adducts. This relationship led us to postulate that oxidation of the carcinogenic 4-hydroxy catechol estrogens (CE) of estrone (E1) and estradiol (E2) to catechol estrogen-3,4-quinones (CE-3, 4-Q) results in electrophilic intermediates that covalently bind to DNA to form depurinating adducts. The resultant apurinic sites in critical genes can generate mutations that may initiate various human cancers. The noncarcinogenic 2-hydroxy CE are oxidized to CE-2,3-Q and form only stable DNA adducts. As reported here, the CE-3,4-Q were bound to DNA in vitro to form the depurinating adduct 4-OHE1(E2)-1(α,β)-N7Gua at 59–213 μmol/mol DNA–phosphate whereas the level of stable adducts was 0.1 μmol/mol DNA–phosphate. In female Sprague–Dawley rats treated by intramammillary injection of E2-3,4-Q (200 nmol) at four mammary glands, the mammary tissue contained 2.3 μmol 4-OHE2-1(α,β)-N7Gua/molDNA–phosphate. When 4-OHE1(E2) were activated by horseradish peroxidase, lactoperoxidase, or cytochrome P450, 87–440 μmol of 4-OHE1(E2)-1(α, β)-N7Gua was formed. After treatment with 4-OHE2, rat mammary tissue contained 1.4 μmol of adduct/mol DNA–phosphate. In each case, the level of stable adducts was negligible. These results, complemented by other data, strongly support the hypothesis that CE-3,4-Q are endogenous tumor initiators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Mycetozoa include the cellular (dictyostelid), acellular (myxogastrid), and protostelid slime molds. However, available molecular data are in disagreement on both the monophyly and phylogenetic position of the group. Ribosomal RNA trees show the myxogastrid and dictyostelid slime molds as unrelated early branching lineages, but actin and β-tubulin trees place them together as a single coherent (monophyletic) group, closely related to the animal–fungal clade. We have sequenced the elongation factor-1α genes from one member of each division of the Mycetozoa, including Dictyostelium discoideum, for which cDNA sequences were previously available. Phylogenetic analyses of these sequences strongly support a monophyletic Mycetozoa, with the myxogastrid and dictyostelid slime molds most closely related to each other. All phylogenetic methods used also place this coherent Mycetozoan assemblage as emerging among the multicellular eukaryotes, tentatively supported as more closely related to animals + fungi than are green plants. With our data there are now three proteins that consistently support a monophyletic Mycetozoa and at least four that place these taxa within the “crown” of the eukaryote tree. We suggest that ribosomal RNA data should be more closely examined with regard to these questions, and we emphasize the importance of developing multiple sequence data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perhaps the most enduring debate in reptile systematics has involved the giant Galápagos tortoises (Geochelone nigra), whose origins and systematic relationships captivated Charles Darwin and remain unresolved to this day. Here we report a phylogenetic reconstruction based on mitochondrial DNA sequences from Galápagos tortoises and Geochelone from mainland South America and Africa. The closest living relative to the Galápagos tortoise is not among the larger-bodied tortoises of South America but is the relatively small-bodied Geochelone chilensis, or Chaco tortoise. The split between G. chilensis and the Galápagos lineage probably occurred 6 to 12 million years ago, before the origin of the oldest extant Galápagos island. Our data suggest that the four named southern subspecies on the largest island, Isabela, are not distinct genetic units, whereas a genetically distinct northernmost Isabela subspecies is probably the result of a separate colonization. Most unexpectedly, the lone survivor of the abingdoni subspecies from Pinta Island (“Lonesome George”) is very closely related to tortoises from San Cristóbal and Española, the islands farthest from the island of Pinta. To rule out a possible recent transplant of Lonesome George, we sequenced DNA from three tortoises collected on Pinta in 1906. They have sequences identical to Lonesome George, consistent with his being the last survivor of his subspecies. This finding may provide guidance in finding a mate for Lonesome George, who so far has failed to reproduce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dehydrins (DHNs, LEA D-11) are plant proteins present during environmental stresses associated with dehydration or low temperatures and during seed maturation. Functions of DHNs have not yet been defined. Earlier, we hypothesized that a ≈35-kDa DHN and membrane properties that reduce electrolyte leakage from seeds confer chilling tolerance during seedling emergence of cowpea (Vigna unguiculata L. Walp.) in an additive and independent manner. Evidence for this hypothesis was not rigorous because it was based on correlations of presence/absence of the DHN and slow electrolyte leakage with chilling tolerance in closely related cowpea lines that have some other genetic differences. Here, we provide more compelling genetic evidence for involvement of the DHN in chilling tolerance of cowpea. We developed near-isogenic lines by backcrossing. We isolated and determined the sequence of a cDNA corresponding to the ≈35-kDa DHN and used gene-specific oligonucleotides derived from it to test the genetic linkage between the DHN presence/absence trait and the DHN structural gene. We tested for association between the DHN presence/absence trait and both low-temperature seed emergence and electrolyte leakage. We show that allelic differences in the Dhn structural gene map to the same position as the DHN protein presence/absence trait and that the presence of the ≈35-kDa DHN is indeed associated with chilling tolerance during seedling emergence, independent of electrolyte leakage effects. Two types of allelic variation in the Dhn gene were identified in the protein-coding region, deletion of one Φ-segment from the DHN-negative lines and two single amino acid substitutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animals have evolved diverse appendages adapted for locomotion, feeding and other functions. The genetics underlying appendage formation are best understood in insects and vertebrates. The expression of the Distal-less (Dll) homeoprotein during arthropod limb outgrowth and of Dll orthologs (Dlx) in fish fin and tetrapod limb buds led us to examine whether expression of this regulatory gene may be a general feature of appendage formation in protostomes and deuterostomes. We find that Dll is expressed along the proximodistal axis of developing polychaete annelid parapodia, onychophoran lobopodia, ascidian ampullae, and even echinoderm tube feet. Dll/Dlx expression in such diverse appendages in these six coelomate phyla could be convergent, but this would have required the independent co-option of Dll/Dlx several times in evolution. It appears more likely that ectodermal Dll/Dlx expression along proximodistal axes originated once in a common ancestor and has been used subsequently to pattern body wall outgrowths in a variety of organisms. We suggest that this pre-Cambrian ancestor of most protostomes and the deuterostomes possessed elements of the genetic machinery for and may have even borne appendages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human adult α-globin locus consists of three pairs of homology blocks (X, Y, and Z) interspersed with three nonhomology blocks (I, II, and III), and three Alu family repeats, Alu1, Alu2, and Alu3. It has been suggested that an ancient primate α-globin-containing unit was ancestral to the X, Y, and Z and the Alu1/Alu2 repeats. However, the evolutionary origin of the three nonhomologous blocks has remained obscure. We have now analyzed the sequence organization of the entire adult α-globin locus of gibbon (Hylobates lar). DNA segments homologous to human block I occur in both duplication units of the gibbon α-globin locus. Detailed interspecies sequence comparisons suggest that nonhomologous blocks I and II, as well as another sequence, IV, were all part of the ancestral α-globin-containing unit prior to its tandem duplication. However, sometime thereafter, block I was deleted from the human α1-globin-containing unit, and block II was also deleted from the α2-globin-containing unit in both human and gibbon. These were probably independent events both mediated by independent illegitimate recombination processes. Interestingly, the end points of these deletions coincide with potential insertion sites of Alu family repeats. These results suggest that the shaping of DNA segments in eukaryotic genomes involved the retroposition of repetitive DNA elements in conjunction with simple DNA recombination processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonsyndromic clefting of the lip and palate in humans has a highly complex etiology, with both multiple genetic loci and exposure to teratogens influencing susceptibility. Previous studies using mouse models have examined only very small portions of the genome. Here we report the findings of a genome-wide search for susceptibility genes for teratogen-induced clefting in the AXB and BXA set of recombinant inbred mouse strains. We compare results obtained using phenytoin (which induces cleft lip) and 6-aminonicotinamide (which induces cleft palate). We use a new statistical approach based on logistic regression suitable for these categorical data to identify several chromosomal regions as possible locations of clefting susceptibility loci, and we review candidate genes located within each region. Because cleft lip and cleft palate do not frequently co-aggregate in human families and because these structures arise semi-independently during development, these disorders are usually considered to be distinct in etiology. Our data, however, implicate several of the same chromosomal regions for both forms of clefting when teratogen-induced. Furthermore, different parental strain alleles are usually associated with clefting of the lip versus that of the palate (i.e., allelic heterogeneity). Because several other chromosomal regions are associated with only one form of clefting, locus heterogeneity also appears to be involved. Our findings in this mouse model suggest several priority areas for evaluation in human epidemiological studies.