2 resultados para agricultural resources use efficiency

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world has been making progress in improving food security, as measured by the per person availability of food for direct human consumption. However, progress has been very uneven, and many developing countries have failed to participate in such progress. In some countries, the food security situation is today worse than 20 years ago. The persistence of food insecurity does not reflect so much a lack of capacity of the world as a whole to increase food production to whatever level would be required for everyone to have consumption levels assuring satisfactory nutrition. The world already produces sufficient food. The undernourished and the food-insecure persons are in these conditions because they are poor in terms of income with which to purchase food or in terms of access to agricultural resources, education, technology, infrastructure, credit, etc., to produce their own food. Economic development failures account for the persistence of poverty and food insecurity. In the majority of countries with severe food-security problems, the greatest part of the poor and food-insecure population depend greatly on local agriculture for a living. In such cases, development failures are often tantamount to failures of agricultural development. Development of agriculture is seen as the first crucial step toward broader development, reduction of poverty and food insecurity, and eventually freedom from excessive economic dependence on poor agricultural resources. Projections indicate that progress would continue, but at a pace and pattern that would be insufficient for the incidence of undernutrition to be reduced significantly in the medium-term future. As in the past, world agricultural production is likely to keep up with, and perhaps tend to exceed, the growth of the effective demand for food. The problem will continue to be one of persistence of poverty, leading to growth of the effective demand for food on the part of the poor that would fall short of that required for them to attain levels of consumption compatible with freedom from undernutrition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wheat (Triticum aestivum L.) was grown under CO2 partial pressures of 36 and 70 Pa with two N-application regimes. Responses of photosynthesis to varying CO2 partial pressure were fitted to estimate the maximal carboxylation rate and the nonphotorespiratory respiration rate in flag and preceding leaves. The maximal carboxylation rate was proportional to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) content, and the light-saturated photosynthetic rate at 70 Pa CO2 was proportional to the thylakoid ATP-synthase content. Potential photosynthetic rates at 70 Pa CO2 were calculated and compared with the observed values to estimate excess investment in Rubisco. The excess was greater in leaves grown with high N application than in those grown with low N application and declined as the leaves senesced. The fraction of Rubisco that was estimated to be in excess was strongly dependent on leaf N content, increasing from approximately 5% in leaves with 1 g N m−2 to approximately 40% in leaves with 2 g N m−2. Growth at elevated CO2 usually decreased the excess somewhat but only as a consequence of a general reduction in leaf N, since relationships between the amount of components and N content were unaffected by CO2. We conclude that there is scope for improving the N-use efficiency of C3 crop species under elevated CO2 conditions.