11 resultados para age levels

em National Center for Biotechnology Information - NCBI


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Smokers have a significantly higher risk for developing coronary and cerebrovascular disease than nonsmokers. Advanced glycation end products (AGEs) are reactive, cross-linking moieties that form from the reaction of reducing sugars and the amino groups of proteins, lipids, and nucleic acids. AGEs circulate in high concentrations in the plasma of patients with diabetes or renal insufficiency and have been linked to the accelerated vasculopathy seen in patients with these diseases. Because the curing of tobacco takes place under conditions that could lead to the formation of glycation products, we examined whether tobacco and tobacco smoke could generate these reactive species that would increase AGE formation in vivo. Our findings show that reactive glycation products are present in aqueous extracts of tobacco and in tobacco smoke in a form that can rapidly react with proteins to form AGEs. This reaction can be inhibited by aminoguanidine, a known inhibitor of AGE formation. We have named these glycation products “glycotoxins.” Like other known reducing sugars and reactive glycation products, glycotoxins form smoke, react with protein, exhibit a specific fluorescence when cross-linked to proteins, and are mutagenic. Glycotoxins are transferred to the serum proteins of human smokers. AGE-apolipoprotein B and serum AGE levels in cigarette smokers were significantly higher than those in nonsmokers. These results suggest that increased glycotoxin exposure may contribute to the increased incidence of atherosclerosis and high prevalence of cancer in smokers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotopic age determinations (40Ar/39Ar) and associated magnetic polarity stratigraphy for Casamayoran age fauna at Gran Barranca (Chubut, Argentina) indicate that the Barrancan “subage” of the Casamayoran South American Land Mammal “Age” is late Eocene, 18 to 20 million years younger than hitherto supposed. Correlations of the radioisotopically dated magnetic polarity stratigraphy at Gran Barranca with the Cenozoic geomagnetic polarity time scale indicate that Barrancan faunal levels at the Gran Barranca date to within the magnetochronologic interval from 35.34 to 36.62 megannums (Ma) or 35.69 to 37.60 Ma. This age revision constrains the timing of an adaptive shift in mammalian herbivores toward hypsodonty. Specifically, the appearance of large numbers of hypsodont taxa in South America occurred sometime between 36 and 32 Ma (late Eocene–early Oligocene), at approximately the same time that other biotic and geologic evidence has suggested the Southern high latitudes experienced climatic cooling associated with Antarctic glaciation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lowe syndrome is an X-linked disorder that has a complex phenotype that includes progressive renal failure and blindness. The disease is caused by mutations in an inositol polyphosphate 5-phosphatase designated OCRL. It has been shown that the OCRL protein is found on the surface of lysosomes and that a renal tubular cell line deficient in OCRL accumulated substrate phosphatidylinositol 4,5-bisphosphate. Because this lipid is required for vesicle trafficking from lysosomes, we postulate that there is a defect in lysosomal enzyme trafficking in patients with Lowe syndrome that leads to increased extracellular lysosomal enzymes and might lead to tissue damage and contribute to the pathogenesis of the disease. We have measured seven lysosomal enzymes in the plasma of 15 patients with Lowe syndrome and 15 age-matched male controls. We find a 1.6- to 2.0-fold increase in all of the enzymes measured. When the data was analyzed by quintiles of activity for all of the enzymes, we found that 95% of values in the lowest quintile come from normal subjects whereas in the highest quintile 85% of the values are from patients with Lowe syndrome. The increased enzyme levels are not attributable to renal insufficiency because there was no difference in enzyme activity in the four patients with the highest creatinine levels compared with the six patients with the lowest creatinine values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pregnenolone sulfate (PREG S) is synthesized in the nervous system and is a major neurosteroid in the rat brain. Its concentrations were measured in the hippocampus and other brain areas of single adult and aged (22–24 month-old) male Sprague–Dawley rats. Significantly lower levels were found in aged rats, although the values were widely scattered and reached, in about half the animals, the same range as those of young ones. The spatial memory performances of aged rats were investigated in two different spatial memory tasks, the Morris water maze and Y-maze. Performances in both tests were significantly correlated and, accompanied by appropriate controls, likely evaluated genuine memory function. Importantly, individual hippocampal PREG S and distance to reach the platform in the water maze were linked by a significant correlation, i.e., those rats with lower memory deficit had the highest PREG S levels, whereas no relationship was found with the PREG S content in other brain areas (amygdala, prefrontal cortex, parietal cortex, striatum). Moreover, the memory deficit of cognitively impaired aged rats was transiently corrected after either intraperitoneal or bilateral intrahippocampal injection of PREG S. PREG S is both a γ-aminobutyric acid antagonist and a positive allosteric modulator at the N-methyl-d-aspartate receptor, and may reinforce neurotransmitter system(s) that decline with age. Indeed, intracerebroventricular injection of PREG S was shown to stimulate acetylcholine release in the adult rat hippocampus. In conclusion, it is proposed that the hippocampal content of PREG S plays a physiological role in preserving and/or enhancing cognitive abilities in old animals, possibly via an interaction with central cholinergic systems. Thus, neurosteroids should be further studied in the context of prevention and/or treatment of age-related memory disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CCAAT/enhancer binding protein α (C/EBPα) and CCAAT/enhancer binding protein β (C/EBPβ) mRNAs are templates for the differential translation of several isoforms. Immunoblotting detects C/EBPαs with molecular masses of 42, 38, 30, and 20 kDa and C/EBPβs of 35, 20, and ∼8.5 kDa. The DNA-binding activities and pool levels of p42C/EBPα and p30C/EBPα in control nuclear extracts decrease significantly whereas the binding activity and protein levels of the 20-kDa isoforms increase dramatically with LPS treatment. Our studies suggest that the LPS response involves alternative translational initiation at specific in-frame AUGs, producing specific C/EBPα and C/EBPβ isoform patterns. We propose that alternative translational initiation occurs by a leaky ribosomal scanning mechanism. We find that nuclear extracts from normal aged mouse livers have decreased p42C/EBPα levels and binding activity, whereas those of p20C/EBPα and p20C/EBPβ are increased. However, translation of 42-kDa C/EBPα is not down-regulated on polysomes, suggesting that aging may affect its nuclear translocation. Furthermore, recovery of the C/EBPα- and C/EBPβ-binding activities and pool levels from an LPS challenge is delayed significantly in aged mouse livers. Thus, aged livers have altered steady-state levels of C/EBPα and C/EBPβ isoforms. This result suggests that normal aging liver exhibits characteristics of chronic stress and a severe inability to recover from an inflammatory challenge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional silencing of genes transferred into hematopoietic stem cells poses one of the most significant challenges to the success of gene therapy. If the transferred gene is not completely silenced, a progressive decline in gene expression as the mice age often is encountered. These phenomena were observed to various degrees in mouse transplant experiments using retroviral vectors containing a human β-globin gene, even when cis-linked to locus control region derivatives. Here, we have investigated whether ex vivo preselection of retrovirally transduced stem cells on the basis of expression of the green fluorescent protein driven by the CpG island phosphoglycerate kinase promoter can ensure subsequent long-term expression of a cis-linked β-globin gene in the erythroid lineage of transplanted mice. We observed that 100% of mice (n = 7) engrafted with preselected cells concurrently expressed human β-globin and the green fluorescent protein in 20–95% of their RBC for up to 9.5 mo posttransplantation, the longest time point assessed. This expression pattern was successfully transferred to secondary transplant recipients. In the presence of β-locus control region hypersensitive site 2 alone, human β-globin mRNA expression levels ranged from 0.15% to 20% with human β-globin chains detected by HPLC. Neither the proportion of positive blood cells nor the average expression levels declined with time in transplanted recipients. Although suboptimal expression levels and heterocellular position effects persisted, in vivo stem cell gene silencing and age-dependent extinction of expression were avoided. These findings support the further investigation of this type of vector for the gene therapy of human hemoglobinopathies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal aging is associated with a significant reduction in cognitive function across primate species. However, the structural and molecular basis for this age-related decline in neural function has yet to be defined clearly. Extensive cell loss does not occur as a consequence of normal aging in human and nonhuman primate species. More recent studies have demonstrated significant reductions in functional neuronal markers in subcortical brain regions in primates as a consequence of aging, including dopaminergic and cholinergic systems, although corresponding losses in cortical innervation from these neurons have not been investigated. In the present study, we report that aging is associated with a significant 25% reduction in cortical innervation by cholinergic systems in rhesus monkeys (P < 0.001). Further, these age-related reductions are ameliorated by cellular delivery of human nerve growth factor to cholinergic somata in the basal forebrain, restoring levels of cholinergic innervation in the cortex to those of young monkeys (P = 0.89). Thus, (i) aging is associated with a significant reduction in cortical cholinergic innervation; (ii) this reduction is reversible by growth-factor delivery; and (iii) growth factors can remodel axonal terminal fields at a distance, representing a nontropic action of growth factors in modulating adult neuronal structure and function (i.e., administration of growth factors to cholinergic somata significantly increases axon density in terminal fields). These findings are relevant to potential clinical uses of growth factors to treat neurological disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To determine the importance of mitochondrial reactive oxygen species toxicity in aging and senescence, we analyzed changes in mitochondrial function with age in mice with partial or complete deficiencies in the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD). Liver mitochondria from homozygous mutant mice, with a complete deficiency in MnSOD, exhibited substantial respiration inhibition and marked sensitization of the mitochondrial permeability transition pore. Mitochondria from heterozygous mice, with a partial deficiency in MnSOD, showed evidence of increased proton leak, inhibition of respiration, and early and rapid accumulation of mitochondrial oxidative damage. Furthermore, chronic oxidative stress in the heterozygous mice resulted in an increased sensitization of the mitochondrial permeability transition pore and the premature induction of apoptosis, which presumably eliminates the cells with damaged mitochondria. Mice with normal MnSOD levels show the same age-related mitochondrial decline as the heterozygotes but occurring later in life. The premature decline in mitochondrial function in the heterozygote was associated with the compensatory up-regulation of oxidative phosphorylation enzyme activity. Thus mitochondrial reactive oxygen species production, oxidative stress, functional decline, and the initiation of apoptosis appear to be central components of the aging process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) intracellularly regenerates active corticosterone from circulating inert 11-dehydrocorticosterone (11-DHC) in specific tissues. The hippocampus is a brain structure particularly vulnerable to glucocorticoid neurotoxicity with aging. In intact hippocampal cells in culture, 11β-HSD-1 acts as a functional 11β-reductase reactivating inert 11-DHC to corticosterone, thereby potentiating kainate neurotoxicity. We examined the functional significance of 11β-HSD-1 in the central nervous system by using knockout mice. Aged wild-type mice developed elevated plasma corticosterone levels that correlated with learning deficits in the watermaze. In contrast, despite elevated plasma corticosterone levels throughout life, this glucocorticoid-associated learning deficit was ameliorated in aged 11β-HSD-1 knockout mice, implicating lower intraneuronal corticosterone levels through lack of 11-DHC reactivation. Indeed, aged knockout mice showed significantly lower hippocampal tissue corticosterone levels than wild-type controls. These findings demonstrate that tissue corticosterone levels do not merely reflect plasma levels and appear to play a more important role in hippocampal functions than circulating blood levels. The data emphasize the crucial importance of local enzymes in determining intracellular glucocorticoid activity. Selective 11β-HSD-1 inhibitors may protect against hippocampal function decline with age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have analyzed the level of intraindividual sequence variability (heteroplasmy) of mtDNA in human brain by denaturing gradient gel electrophoresis and sequencing. Single base substitutions, as well as insertions or deletions of single bases, were numerous in the noncoding control region (D-loop), and 35-45% of the molecules from a single tissue showed sequence differences. By contrast, heteroplasmy in coding regions was not detected. The lower level of heteroplasmy in the coding regions is indicative of selection against deleterious mutations. Similar levels of heteroplasmy were found in two brain regions from the same individual, while no heteroplasmy was detected in blood. Thus, heteroplasmy seems to be more frequent in nonmitotic tissues. We observed a 7.7-fold increase in the frequency of deletions/insertions and a 2.2-fold increase in the overall frequency of heteroplasmic mutations in two individuals aged 96 and 99, relative to an individual aged 28. Our results show that intraindividual sequence variability occurs at a high frequency in the noncoding regions of normal human brain and indicate that small insertions and deletions might accumulate with age at a lower rate than large rearrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated whether side chain-hydroxylated cholesterol species are important for elimination of cholesterol from the brain. Plasma concentrations of 24-hydroxycholesterol (24-OH-Chol) in the internal jugular vein and the brachial artery in healthy volunteers were consistent with a net flux of this steroid from the brain into the circulation, corresponding to elimination of approximately 4 mg cholesterol during a 24-h period in adults. Results of experiments with rats exposed to 18O2 were also consistent with a flux of 24-OH-Chol from the brain into the circulation. No other oxysterol measured showed a similar behavior as 24-OH-Chol. These results and the finding that the concentration of 24-OH-Chol was 30- to 1500-fold higher in the brain than in any other organ except the adrenals indicate that the major part of 24-OH-Chol present in the circulation originates from the brain. Both the 24-OH-Chol present in the brain and in the circulation were the 24S-stereoisomer. In contrast to other oxysterols, levels of plasma 24-OH-Chol were found to be markedly dependent upon age. The ratio between 24-OH-Chol and cholesterol in plasma was approximately 5 times higher during the first decade of life than during the sixth decade. There was a high correlation between levels of 24-OH-Chol in plasma and cerebrospinal fluid. It is suggested that the flux of 24-OH-Chol from the brain is important for cholesterol homeostasis in this organ.