7 resultados para affected individuals, area N1
em National Center for Biotechnology Information - NCBI
Resumo:
Synpolydactyly (SPD) is a dominantly inherited congenital limb malformation. Typical cases have 3/4 finger and 4/5 toe syndactyly, with a duplicated digit in the syndactylous web, but incomplete penetrance and variable expressivity are common. The condition has recently been shown to be caused by expansions of an imperfect trinucleotide repeat sequence encoding a 15-residue polyalanine tract in HOXD13. We have studied 16 new and 4 previously published SPD families, with between 7 and 14 extra residues in the tract, to analyze the molecular basis for the observed variation in phenotype. Although there is no evidence of change in expansion size within families, even over six generations, there is a highly significant increase in the penetrance and severity of phenotype with increasing expansion size, affecting both hands (P = 0.012) and feet (P < 0.00005). Affected individuals from a family with a 14-alanine expansion, the largest so far reported, all have a strikingly similar and unusually severe limb phenotype, involving the first digits and distal carpals. Affected males from this family also have hypospadias, not previously described in SPD, but consistent with HOXD13 expression in the developing genital tubercle. The remarkable correlation between phenotype and expansion size suggests that expansion of the tract leads to a specific gain of function in the mutant HOXD13 protein, and has interesting implications for the role of polyalanine tracts in the control of transcription.
Resumo:
Several adult-onset neurodegenerative diseases are caused by genes with expanded CAG triplet repeats within their coding regions and extended polyglutamine (Qn) domains within the expressed proteins. Generally, in clinically affected individuals n ≥ 40. Glyceraldehyde 3-phosphate dehydrogenase binds tightly to four Qn disease proteins, but the significance of this interaction is unknown. We now report that purified glyceraldehyde 3-phosphate dehydrogenase is inactivated by tissue transglutaminase in the presence of glutathione S-transferase constructs containing a Qn domain of pathological length (n = 62 or 81). The dehydrogenase is less strongly inhibited by tissue transglutaminase in the presence of constructs containing shorter Qn domains (n = 0 or 10). Purified α-ketoglutarate dehydrogenase complex also is inactivated by tissue transglutaminase plus glutathione S-transferase constructs containing pathological-length Qn domains (n = 62 or 81). The results suggest that tissue transglutaminase-catalyzed covalent linkages involving the larger poly-Q domains may disrupt cerebral energy metabolism in CAG/Qn expansion diseases.
Resumo:
Retinitis pigmentosa (RP) is a group of inherited blinding diseases caused by mutations in multiple genes including RDS. RDS encodes rds/peripherin (rds), a 36-kDa glycoprotein in the rims of rod and cone outer-segment (OS) discs. Rom1 is related to rds with similar membrane topology and the identical distribution in OS. In contrast to RDS, no mutations in ROM1 alone have been associated with retinal disease. However, an unusual digenic form of RP has been described. Affected individuals in several families were doubly heterozygous for a mutation in RDS causing a leucine 185 to proline substitution in rds (L185P) and a null mutation in ROM1. Neither mutation alone caused clinical abnormalities. Here, we generated transgenic/knockout mice that duplicate the amino acid substitutions and predicted levels of rds and rom1 in patients with RDS-mediated digenic and dominant RP. Photoreceptor degeneration in the mouse model of digenic RP was faster than in the wild-type and monogenic controls by histological, electroretinographic, and biochemical analysis. We observed a positive correlation between the rate of photoreceptor loss and the extent of OS disorganization in mice of several genotypes. Photoreceptor degeneration in RDS-mediated RP appears to be caused by a simple deficiency of rds and rom1. The critical threshold for the combined abundance of rds and rom1 is ≈60% of wild type. Below this value, the extent of OS disorganization results in clinically significant photoreceptor degeneration.
Resumo:
Werner syndrome (WS) is a premature aging disorder where the affected individuals appear much older than their chronological age. The single gene that is defective in WS encodes a protein (WRN) that has ATPase, helicase and 3′→5′ exonuclease activities. Our laboratory has recently uncovered a physical and functional interaction between WRN and the Ku heterodimer complex that functions in double-strand break repair and V(D)J recombination. Importantly, Ku specifically stimulates the exonuclease activity of WRN. We now report that Ku enables the Werner exonuclease to digest through regions of DNA containing 8-oxoadenine and 8-oxoguanine modifications, lesions that have previously been shown to block the exonuclease activity of WRN alone. These results indicate that Ku significantly alters the exonuclease function of WRN and suggest that the two proteins function concomitantly in a DNA damage processing pathway. In support of this notion we also observed co-localization of WRN and Ku, particularly after DNA damaging treatments.
Resumo:
We are conducting a genome scan at an average resolution of 10 centimorgans (cM) for type 2 diabetes susceptibility genes in 716 affected sib pairs from 477 Finnish families. To date, our best evidence for linkage is on chromosome 20 with potentially separable peaks located on both the long and short arms. The unweighted multipoint maximum logarithm of odds score (MLS) was 3.08 on 20p (location, x̂ = 19.5 cM) under an additive model, whereas the weighted MLS was 2.06 on 20q (x̂ = 57 cM, recurrence risk, λ̂s = 1.25, P = 0.009). Weighted logarithm of odds scores of 2.00 (x̂ = 69.5 cM, P = 0.010) and 1.92 (x̂ = 18.5 cM, P = 0.013) were also observed. Ordered subset analyses based on sibships with extreme mean values of diabetes-related quantitative traits yielded sets of families who contributed disproportionately to the peaks. Two-hour glucose levels in offspring of diabetic individuals gave a MLS of 2.12 (P = 0.0018) at 9.5 cM. Evidence from this and other studies suggests at least two diabetes-susceptibility genes on chromosome 20. We have also screened the gene for maturity-onset diabetes of the young 1, hepatic nuclear factor 4-a (HNF-4α) in 64 affected sibships with evidence for high chromosomal sharing at its location on chromosome 20q. We found no evidence that sequence changes in this gene accounted for the linkage results we observed.
Resumo:
Syntax denotes a rule system that allows one to predict the sequencing of communication signals. Despite its significance for both human speech processing and animal acoustic communication, the representation of syntactic structure in the mammalian brain has not been studied electrophysiologically at the single-unit level. In the search for a neuronal correlate for syntax, we used playback of natural and temporally destructured complex species-specific communication calls—so-called composites—while recording extracellularly from neurons in a physiologically well defined area (the FM–FM area) of the mustached bat’s auditory cortex. Even though this area is known to be involved in the processing of target distance information for echolocation, we found that units in the FM–FM area were highly responsive to composites. The finding that neuronal responses were strongly affected by manipulation in the time domain of the natural composite structure lends support to the hypothesis that syntax processing in mammals occurs at least at the level of the nonprimary auditory cortex.
Resumo:
Acclimation of photosynthesis to elevated CO2 has previously been shown to be more pronounced when N supply is poor. Is this a direct effect of N or an indirect effect of N by limiting the development of sinks for photoassimilate? This question was tested by growing a perennial ryegrass (Lolium perenne) in the field under elevated (60 Pa) and current (36 Pa) partial pressures of CO2 (pCO2) at low and high levels of N fertilization. Cutting of this herbage crop at 4- to 8-week intervals removed about 80% of the canopy, therefore decreasing the ratio of photosynthetic area to sinks for photoassimilate. Leaf photosynthesis, in vivo carboxylation capacity, carbohydrate, N, ribulose-1,5-bisphosphate carboxylase/oxygenase, sedoheptulose-1,7-bisphosphatase, and chloroplastic fructose-1,6-bisphosphatase levels were determined for mature lamina during two consecutive summers. Just before the cut, when the canopy was relatively large, growth at elevated pCO2 and low N resulted in significant decreases in carboxylation capacity and the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase protein. In high N there were no significant decreases in carboxylation capacity or proteins, but chloroplastic fructose-1,6-bisphosphatase protein levels increased significantly. Elevated pCO2 resulted in a marked and significant increase in leaf carbohydrate content at low N, but had no effect at high N. This acclimation at low N was absent after the harvest, when the canopy size was small. These results suggest that acclimation under low N is caused by limitation of sink development rather than being a direct effect of N supply on photosynthesis.