7 resultados para affect new

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Widespread interest in producing transgenic organisms is balanced by concern over ecological hazards, such as species extinction if such organisms were to be released into nature. An ecological risk associated with the introduction of a transgenic organism is that the transgene, though rare, can spread in a natural population. An increase in transgene frequency is often assumed to be unlikely because transgenic organisms typically have some viability disadvantage. Reduced viability is assumed to be common because transgenic individuals are best viewed as macromutants that lack any history of selection that could reduce negative fitness effects. However, these arguments ignore the potential advantageous effects of transgenes on some aspect of fitness such as mating success. Here, we examine the risk to a natural population after release of a few transgenic individuals when the transgene trait simultaneously increases transgenic male mating success and lowers the viability of transgenic offspring. We obtained relevant life history data by using the small cyprinodont fish, Japanese medaka (Oryzias latipes) as a model. Our deterministic equations predict that a transgene introduced into a natural population by a small number of transgenic fish will spread as a result of enhanced mating advantage, but the reduced viability of offspring will cause eventual local extinction of both populations. Such risks should be evaluated with each new transgenic animal before release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two factors that contribute to the progression of Parkinson disease are a brain defect in mitochondrial respiration and the generation of hydrogen peroxide (H2O2) by monoamine oxidase (MAO). Here we show that the two are linked. Metabolism of the neurotransmitter dopamine, or other monoamines (benzylamine, tyramine), by intact rat brain mitochondria suppresses pyruvate- and succinate-dependent electron transport. MAO inhibitors prevent this action. Mitochondrial damage is also reversed during electron flow. A probable explanation is that MAO-generated H2O2 oxidizes glutathione to glutathione disulfide (GSSG), which undergoes thiol-disulfide interchange to form protein mixed disulfides, thereby interfering reversibly with thiol-dependent enzymatic function. In agreement with this premise, direct addition of GSSG to mitochondria resulted in similar reversible inhibition of electron transport. In addition, the monoamines induced an elevation in protein mixed disulfides within mitochondria. These observations imply that (i) heightened activity and metabolism of neurotransmitter by monoamine neurons may affect neuronal function, and (ii) apparent defects in mitochondrial respiration associated with Parkinson disease may reflect, in part, an established increase in dopamine turnover. The experimental results also target mitochondrial repair mechanisms for further investigation and may, in time, lead to newer forms of therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Saccharomyces cerevisiae, the Mps1p protein kinase is critical for both spindle pole body (SPB) duplication and the mitotic spindle assembly checkpoint. The mps1–1 mutation causes failure early in SPB duplication, and because the spindle assembly checkpoint is also compromised, mps1–1 cells proceed with a monopolar mitosis and rapidly lose viability. Here we report the genetic and molecular characterization of mps1–1 and five new temperature-sensitive alleles of MPS1. Each of the six alleles contains a single point mutation in the region of the gene encoding the protein kinase domain. The mutations affect several residues conserved among protein kinases, most notably the invariant glutamate in subdomain III. In vivo and in vitro kinase activity of the six epitope-tagged mutant proteins varies widely. Only two display appreciable in vitro activity, and interestingly, this activity is not thermolabile under the assay conditions used. While five of the six alleles cause SPB duplication to fail early, yielding cells with a single SPB, mps1–737 cells proceed into SPB duplication and assemble a second SPB that is structurally defective. This phenotype, together with the observation of intragenic complementation between this unique allele and two others, suggests that Mps1p is required for multiple events in SPB duplication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autoimmune diseases such as systemic lupus erythematosus are complex genetic traits with contributions from major histocompatibility complex (MHC) genes and multiple unknown non-MHC genes. Studies of animal models of lupus have provided important insight into the immunopathogenesis of disease, and genetic analyses of these models overcome certain obstacles encountered when studying human patients. Genome-wide scans of different genetic crosses have been used to map several disease-linked loci in New Zealand hybrid mice. Although some consensus exists among studies mapping the New Zealand Black (NZB) and New Zealand White (NZW) loci that contribute to lupus-like disease, considerable variability is also apparent. A variable in these studies is the genetic background of the non-autoimmune strain, which could influence genetic contributions from the affected strain. A direct examination of this question was undertaken in the present study by mapping NZB nephritis-linked loci in backcrosses involving different non-autoimmune backgrounds. In a backcross with MHC-congenic C57BL/6J mice, H2z appeared to be the strongest genetic determinant of severe lupus nephritis, whereas in a backcross with congenic BALB/cJ mice, H2z showed no influence on disease expression. NZB loci on chromosomes 1, 4, 11, and 14 appeared to segregate with disease in the BALB/cJ cross, but only the influence of the chromosome 1 locus spanned both crosses and showed linkage with disease when all mice were considered. Thus, the results indicate that contributions from disease-susceptibility loci, including MHC, may vary markedly depending on the non-autoimmune strain used in a backcross analysis. These studies provide insight into variables that affect genetic heterogeneity and add an important dimension of complexity for linkage analyses of human autoimmune disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of histone H1 binding on the cleavage of superhelical plasmids by single-strand-specific nucleases was investigated. Mapping of P1 cleavage sites in pBR322, achieved by EcoRI digestion after the original P1 attack, showed an intriguing phenomenon: preexisting susceptible sites became "protected," whereas some new sites appeared at high levels of H1. Similar results were obtained with another single-strand-specific nuclease, S1. Disappearance of cutting at preexisting sites and appearance of new sites was also observed in a derivative plasmid that contains a 36-bp stretch of alternating d(AT) sequence that is known to adopt an altered P1-sensitive conformation. On the other hand, H1 titration of a dimerized version of the d(AT)18-containing plasmid led to protection of all preexisting sites except the d(AT)18 inserts, which were still cut even at high H1 levels; in this plasmid no new sites appeared. The protection of preexisting sites is best explained by long-range effects of histone H1 binding on the superhelical torsion of the plasmid. The appearance of new sites, on the other hand, probably also involves a local effect of stabilization of specific sequences in Pl-sensitive conformation, due to direct H1 binding to such sequences. That such binding involves linker histone N- and/or C-terminal tails is indicated by the fact that titration with the globular domain of H5, while causing disappearance of preexisting sites, does not lead to the appearance of any new sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In bilateral animals, the left and right sides of the body usually present asymmetric structures, the genetic bases of whose generation are still largely unknown [CIBA Foundation (1991) Biological Asymmetry and Handedness, CIBA Foundation Symposium 162 (Wiley, New York), pp. 1-327]. In Drosophila melanogaster, mutations in the rotated abdomen (rt) locus cause a clockwise helical rotation of the body. Even null alleles are viable but exhibit defects in embryonic muscle development, rotation of the whole larval body, and helical staggering of cuticular patterns in abdominal segments of the adult. rotated abdomen is expressed in the embryonic mesoderm and midgut but not in the ectoderm; it encodes a putative integral membrane glycoprotein (homologous to key yeast mannosyltransferases). Mesodermal cells defective in O-glycosylation lead to an impaired larval muscular system. We propose that the staggering of the adult abdominal segments would be a consequence of the relaxation of intrinsic rotational torque of muscle architecture, preventing the colateral alignment of the segmental histoblast cells during their proliferation at metamorphosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human immunodeficiency virus (HIV) type 2, the second AIDS-associated human retrovirus, differs from HIV-1 in its natural history, infectivity, and pathogenicity, as well as in details of its genomic structure and molecular behavior. We report here that HIV-2 inhibits the replication of HIV-1 at the molecular level. This inhibition was selective, dose-dependent, and nonreciprocal. The closely related simian immunodeficiency provirus also inhibited HIV-1. The selectivity of inhibition was shown by the observation that HIV-2 did not significantly downmodulate the expression of the unrelated murine leukemia virus; neither did the murine leukemia virus markedly affect HIV-1 or HIV-2 expression. Moreover, while HIV-2 potently inhibited HIV-1, the reverse did not happen, thus identifying yet another and remarkable difference between HIV-1 and HIV-2. Mutational analysis of the HIV-2 genome suggested that the inhibition follows a complex pathway, possibly involving multiple genes and redundant mechanisms. Introduction of inactivating mutations into the structural and regulatory/accessory genes did not render the HIV-2 provirus ineffective. Some of the HIV-2 gene defects, such as that of tat and rev genes, were phenotypically transcomplemented by HIV-1. The HIV-2 proviruses with deletions in the putative packaging signal and defective for virus replication were effective in inducing the suppressive phenotype. Though the exact mechanism remains to be defined, the inhibition appeared to be mainly due to an intracellular molecular event because it could not be explained solely on the basis of cell surface receptor mediated interference. The results support the notion that the inhibition likely occurred at the level of viral RNA, possibly involving competition between viral RNAs for some transcriptional factor essential for virus replication. Induction of a cytokine is another possibility. These findings might be relevant to the clinical-epidemiological data suggesting that infection with HIV-2 may offer some protection against HIV-1 infection.