19 resultados para activated macrophages
em National Center for Biotechnology Information - NCBI
Resumo:
The Fas/APO-1 cytotoxic pathway plays an important role in the regulation of peripheral immunity. Recent evidence indicates that this regulatory function operates through deletion of activated T and B lymphocytes by CD4+ T cells expressing the Fas ligand. Because macrophages play a key role in peripheral immunity, we asked whether Fas was involved in T-cell-macrophage interactions. Two-color flow cytometry revealed that Fas receptor (FasR) was expressed on resting murine peritoneal macrophages. FasR expression was upregulated after activation of macrophages with cytokines or lipopolysaccharide, although only tumor necrosis factor-alpha rendered macrophages sensitive to anti-FasR antibody-mediated death. To determine the consequence of antigen presentation by macrophages to CD4+ T cells, macrophages were pulsed with antigen and then incubated with either Th1 or Th2 cell lines or clones. Th1, but not Th2, T cells induced lysis of 60-80% of normal macrophages, whereas macrophages obtained from mice with mutations in the FasR were totally resistant to Th1-mediated cytotoxicity. Macrophage cytotoxicity depended upon specific antigen recognition by T cells and was major histocompatibility complex restricted. These findings indicate that, in addition to deletion of activated lymphocytes, Fas plays an important role in deletion of activated macrophages after antigen presentation to Th1 CD4+ T cells. Failure to delete macrophages that constitutively present self-antigens may contribute to the expression of autoimmunity in mice deficient in FasR (lpr) or Fas ligand (gld).
Resumo:
The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis.
Resumo:
Lipophosphoglycan (LPG) glycoconjugates from promastigotes of Leishmania were not able to induce the expression of the cytokine-inducible nitric oxide synthase (iNOS) by the murine macrophage cell line, J774. However, they synergize with interferon gamma to stimulate the macrophages to express high levels of iNOS. This synergistic effect was critically time-dependent. Preincubation of J774 cells with the LPG glycans 4-18 h before stimulation with interferon gamma resulted in a significant reduction in the expression of iNOS mRNA and of NO synthesis, compared with cells preincubated with culture medium alone. The regulatory effect on the induction of iNOS by LPG is located in the LPG phosphoglycan disaccharide backbone. Synthetic fragments of this backbone had a similar regulatory effect on NO synthesis. Further, the production of NO by activated macrophages in the present system was correlated directly with the leishmanicidal capacity of the cells. These data therefore demonstrate that LPG glycoconjugates have a profound effect on the survival of Leishmania parasites through their ability to regulate the expression of iNOS by macrophages.
Resumo:
Invasive Salmonella typhimurium induces dramatic cytoskeletal changes on the membrane surface of mammalian epithelial cells and RAW264.7 macrophages as part of its entry mechanism. Noninvasive S. typhimurium strains are unable to induce this membrane ruffling. Invasive S. typhimurium strains invade RAW264.7 macrophages in 2 h with 7- to 10-fold higher levels than noninvasive strains. Invasive S. typhimurium and Salmonella typhi, independent of their ability to replicate intracellularly, are cytotoxic to RAW264.7 macrophages and, to a greater degree, to murine bone marrow-derived macrophages. Here, we show that the macrophage cytotoxicity mediated by invasive Salmonella is apoptosis, as shown by nuclear morphology, cytoplasmic vacuolization, and host cell DNA fragmentation. S. typhimurium that enter cells causing ruffles but are mutant for subsequent intracellular replication also initiate host cell apoptosis. Mutant S. typhimurium that are incapable of inducing host cell membrane ruffling fail to induce apoptosis. The activation state of the macrophage plays a significant role in the response of macrophages to Salmonella invasion, perhaps indicating that the signal or receptor for initiating programmed cell death is upregulated in activated macrophages. The ability of Salmonella to promote apoptosis may be important for the initiation of infection, bacterial survival, and escape of the host immune response.
Resumo:
The 5' region of the human lysozyme gene from -3500 to +25 was fused to a chloramphenicol acetyltransferase (CAT) reporter gene and three transgenic founder mice were obtained. All three transgenic lines showed the same pattern of CAT enzyme expression in adult mouse tissues that was consistent with the targeting of elicited, activated macrophages in tissues and developing and elicited granulocytes. In normal mice high CAT enzyme activity was found in the spleen, lung, and thymus, tissues rich in phagocytically active cells, but not in many other tissues, such as the gut and muscle, which contain resident macrophages. Cultured resident peritoneal macrophages and cells elicited 18 hr (granulocytes) and 4 days (macrophages) after injection of sterile thioglycollate broth expressed CAT activity. Bacillus Calmette-Guérin infection of transgenic mice resulted in CAT enzyme expression in the liver, which contained macrophage-rich granulomas, whereas the liver of uninfected mice did not have any detectable CAT enzyme activity. Although the Paneth cells of the small intestine in both human and mouse produce lysozyme, the CAT gene, under the control of the human lysozyme promoter, was not expressed in the mouse small intestine. These results indicate that the human lysozyme promoter region may be used to direct expression of genes to activated mouse myeloid cells.
Resumo:
The 170-kDa subunit of the galactose-adherence lectin (Gal-lectin) of Entamoeba histolytica mediates adherence to human colonic mucins and intestinal epithelium as a prerequisite to amebic invasion. The Gal-lectin is an immunodominant molecule and a protective antigen in the gerbil model of amebiasis. Tumor necrosis factor alpha (TNF-alpha) produced by activated macrophages enhances nitric oxide-dependent cytotoxicity in host defense against E. histolytica. The purpose of this study was to identify the Gal-lectin epitopes which stimulate TNF-alpha production by macrophages. Murine bone marrow-derived macrophages (BMMs) exposed to Gal-lectin (100-500 ng/ml) stimulated stable expression of TNF-alpha mRNA (8-fold increase) and TNF-alpha production similar to that of lipopolysaccharide-stimulated cells (100 ng/ml). Polyclonal anti-lectin serum specifically inhibited TNF-alpha mRNA induction in response to the Gal-lectin but not to lipopolysaccharide. Anti-lectin monoclonal antibodies 8C12, H85 and 1G7, which recognize nonoverlapping epitopes of the cysteine-rich region of the 170-kDa heavy subunit, inhibited both amebic adherence to mammalian cells and Gal-lectin-stimulated TNF-alpha mRNA expression by BMMs,but monoclonal antibody 7F4 did neither. As these inhibitory antibodies map to amino acids 596-1082 of the 170-kDa Gal-lectin, our results have identified the functional region that mediates amebic adherence and TNF-alpha mRNA induction in BMMMs; thus, this region of the Gal-lectin is a subunit vaccine candidate.
Resumo:
Paraquat (PQ) is a well described pneumotoxicant that produces toxicity by redox cycling with cellular diaphorases, thereby elevating intracellular levels of superoxide (O2⨪). NO synthase (NOS) has been shown to participate in PQ-induced lung injury. Current theory holds that NO reacts with O2⨪ generated by PQ to produce the toxin peroxynitrite. We asked whether NOS might alternatively function as a PQ diaphorase and reexamined the question of whether NO/O2⨪ reactions were toxic or protective. Here, we show that: (i) neuronal NOS has PQ diaphorase activity that inversely correlates with NO formation; (ii) PQ-induced endothelial cell toxicity is attenuated by inhibitors of NOS that prevent NADPH oxidation, but is not attenuated by those that do not; (iii) PQ inhibits endothelium-derived, but not NO-induced, relaxations of aortic rings; and (iv) PQ-induced cytotoxicity is potentiated in cytokine-activated macrophages in a manner that correlates with its ability to block NO formation. These data indicate that NOS is a PQ diaphorase and that toxicity of such redox-active compounds involves a loss of NO-related activity.
Resumo:
We have previously identified a 94- to 97-kDa oxidized low density lipoprotein (LDL)-binding protein in mouse macrophages as macrosialin (MS), a member of the lamp family. Earlier immunostaining studies have shown that MS and its human homolog, CD68, are predominantly intracellular proteins. However, using sensitive techniques such as flow cytometry (FACS) and cell-surface-specific biotinylation, we now show that there is significant surface expression of these proteins. FACS analysis of intact cells using mAb FA/11 showed small but definite surface expression of MS in resident mouse peritoneal macrophages but this was greatly enhanced with thioglycollate elicitation. Biotinylation of intact cells and detergent-solubilized cell preparations followed by immunoprecipitation revealed 10–15% of the total MS content of elicited macrophages on the plasma membrane. Similar results were obtained with untreated RAW 264.7 cells. FACS analysis of intact THP-1 monocytic cells showed minimal surface expression of CD68 on unactivated cells (4% of total cell content). Stimulation with phorbol 12-myristate 13-acetate increased both surface and total CD68 expression considerably. Furthermore, the specific binding at 4°C and uptake at 37°C of 125I-labeled oxidized LDL by activated THP-1 cells was inhibited by 30–50% by CD68 mAbs KP-1 and EBM-11. Thus, although the surface expression of MS/CD68 at steady-state represents only a small percentage of their total cellular content, these proteins can play a significant role in oxidized LDL uptake by activated macrophages in vitro and could contribute to foam cell formation in atherosclerotic lesions.
Resumo:
While effector molecules produced by activated macrophages (including nitric oxide, tumor necrosis factor α, interleukin 1, etc.) help to eliminate pathogens, high levels of these molecules can be deleterious to the host itself. Despite their importance, the mechanisms modulating macrophage effector functions are poorly understood. This work introduces two key negative regulators that control the levels and duration of macrophage cytokine production. Vacuolar-type H+-ATPase (V-ATPase) and calcineurin (Cn) constitutively act in normal macrophages to suppress expression of inflammatory cytokines in the absence of specific activation and to inhibit macrophage cytokine responses induced by bacterial lipopolysaccharide (V-ATPase), interferon γ (V-ATPase and Cn), and calcium (Ca2+) flux (Cn). Cn and V-ATPase modulate effector gene expression at the mRNA level by inhibiting transcription factor NF-κB. This negative regulation by Cn is opposite to its crucial positive role in T cells, where it activates NFAT transcription factor(s) leading to expression of interleukin 2, tumor necrosis factor α, and other cytokine genes. The negative effects of V-ATPase and Cn on NF-κB-dependent gene expression are not limited to the macrophage lineage, as similar effects have been seen with a murine fibroblast cell line and with primary astrocytes.
Resumo:
CD40 is a member of the tumor necrosis factor receptor superfamily. The interaction between CD40 and CD40 ligand (CD154) activates NF-κB, Jun N-terminal kinase, and Janus kinase/signal transducers and activators of transcription pathways and promotes B cell growth, differentiation, and survival as well as IL-12 production in macrophages and dendritic cells. We demonstrate here the existence of multiple isoforms of CD40 mRNA generated by alternative splicing and show that their expression is regulated differentially in activated macrophages and dendritic cells. Pre-CD40 RNA is spliced preferentially out to signal-transducible CD40 mRNA in the early stage of activation; half of the CD40 mRNA is replaced by the signal-nontransducible CD40 mRNAs in the later stages (24 h). Using IL-12 p40 gene expression as a reporter for CD40 signaling, we show that three of the alternative isoforms can disable signaling through CD40. The major alternative isoform lacks the membrane-associated endodomain and seems to reduce the amount of the signal-transducible form available on the cell surface. It would seem, therefore, that CD40 expression is controlled by posttranscriptional and posttranslational regulation through alternative splicing. Modulation of isoform expression may provide a mechanism by which cells regulate their susceptibility to CD40L signaling.
Resumo:
The distinction between physiological (apoptotic) and pathological (necrotic) cell deaths reflects mechanistic differences in cellular disintegration and is of functional significance with respect to the outcomes that are triggered by the cell corpses. Mechanistically, apoptotic cells die via an active and ordered pathway; necrotic deaths, conversely, are chaotic and passive. Macrophages and other phagocytic cells recognize and engulf these dead cells. This clearance is believed to reveal an innate immunity, associated with inflammation in cases of pathological but not physiological cell deaths. Using objective and quantitative measures to assess these processes, we find that macrophages bind and engulf native apoptotic and necrotic cells to similar extents and with similar kinetics. However, recognition of these two classes of dying cells occurs via distinct and noncompeting mechanisms. Phosphatidylserine, which is externalized on both apoptotic and necrotic cells, is not a specific ligand for the recognition of either one. The distinct modes of recognition for these different corpses are linked to opposing responses from engulfing macrophages. Necrotic cells, when recognized, enhance proinflammatory responses of activated macrophages, although they are not sufficient to trigger macrophage activation. In marked contrast, apoptotic cells profoundly inhibit phlogistic macrophage responses; this represents a cell-associated, dominant-acting anti-inflammatory signaling activity acquired posttranslationally during the process of physiological cell death.
Resumo:
12/15-Lipoxygenase (LOX) activity is elevated in vascular diseases associated with impaired nitric oxide (⋅NO) bioactivity, such as hypertension and atherosclerosis. In this study, primary porcine monocytes expressing 12/15-LOX, rat A10 smooth muscle cells transfected with murine 12/15-LOX, and purified porcine 12/15-LOX all consumed ⋅NO in the presence of lipid substrate. Suppression of LOX diene conjugation by ⋅NO was also found, although the lipid product profile was unchanged. ⋅NO consumption by porcine monocytes was inhibited by the LOX inhibitor, eicosatetraynoic acid. Rates of arachidonate (AA)- or linoleate (LA)-dependent ⋅NO depletion by porcine monocytes (2.68 ± 0.03 nmol ⋅ min−1 ⋅ 106 cells−1 and 1.5 ± 0.25 nmol ⋅ min−1 ⋅ 106 cells−1, respectively) were several-fold greater than rates of ⋅NO generation by cytokine-activated macrophages (0.1–0.2 nmol ⋅ min−1 ⋅ 106 cells−1) and LA-dependent ⋅NO consumption by primary porcine monocytes inhibited ⋅NO activation of soluble guanylate cyclase. These data indicate that catalytic ⋅NO consumption by 12/15-LOX modulates monocyte ⋅NO signaling and suggest that LOXs may contribute to vascular dysfunction not only by the bioactivity of their lipid products, but also by serving as catalytic sinks for ⋅NO in the vasculature.
Resumo:
SJL mice spontaneously develop pre-B-cell lymphoma that we hypothesized might stimulate macrophages to produce nitric oxide (NO.). Transplantation of an aggressive lymphoma (RcsX) was used to induce tumor formation. Urinary nitrate excretion was measured as an index of NO. production and was found to increase 50-fold by 13 days after tumor injection. NO. production was prevented by the addition of a nitric oxide synthase (NOS) inhibitor. The expression of inducible NOS (iNOS) in various tissues was estimated by Western blot analysis and localized by immunohistochemistry. The synthase was detected in the spleen, lymph nodes, and liver of treated but not control mice. To assess whether the iNOS-staining cells were macrophages, spleen sections from ResX-bearing animals were costained with anti-iNOS antibody and the anti-macrophage antibody moma-2. Expression of iNOS was found to be limited to a subset of the macrophage population. The concentration of gamma-interferon, a cytokine known to induce NO. production by macrophages, in the serum of tumor-bearing mice, was measured and found to be elevated 25-fold above untreated mice. The ability of ResX-activated macrophages to inhibit splenocyte growth in primary culture was estimated and macrophage-derived NO. was found to inhibit cell division 10-fold. Our findings demonstrate that ResX cells stimulate NO. production by macrophages in the spleen and lymph nodes of SJL mice, and we believe this experimental model will prove useful for study of the toxicological effects of NO. under physiological conditions.
Resumo:
STAT1 is an essential transcription factor for macrophage activation by IFN-γ and requires phosphorylation of the C-terminal Ser727 for transcriptional activity. In macrophages, Ser727 phosphorylation in response to bacterial lipopolysaccharide (LPS), UV irradiation, or TNF-α occurred through a signaling path sensitive to the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 whereas IFN-γ-mediated Ser727 phosphorylation was not inhibited by the drug. Consistently, SB203580 did not affect IFN-γ-mediated, Stat1-dependent transcription but inhibited its enhancement by LPS. Furthermore, LPS, UV irradiation, and TNF-α caused activation of p38 MAPK whereas IFN-γ did not. An essential role for p38 MAPK activity in STAT1 Ser727 phosphorylation was confirmed by using cells expressing an SB203580-resistant p38 MAPK. In such cells, STAT1 Ser727 phosphorylation in response to UV irradiation was found to be SB203580 insensitive. Targeted disruption of the mapkap-k2 gene, encoding a kinase downstream of p38 MAPK with a key role in LPS-stimulated TNF-α production and stress-induced heat shock protein 25 phosphorylation, was without a significant effect on UV-mediated Ser727 phosphorylation. The recombinant Stat1 C terminus was phosphorylated in vitro by p38MAPKα and β but not by MAPK-activated protein kinase 2. Janus kinase 2 activity, previously reported to be required for IFN-γ-mediated Ser727 phosphorylation, was not needed for LPS-mediated Ser727 phosphorylation, and activation of Janus kinase 2 did not cause the appearance of STAT1 Ser727 kinase activity. Our data suggest that STAT1 is phosphorylated at Ser727 by a stress-activated signaling pathway either through p38 MAPK directly or through an unidentified kinase downstream of p38MAPK.
Resumo:
A pleiotropic cytokine, tumor necrosis factor-α (TNFα), regulates the expression of multiple macrophage gene products and thus contributes a key role in host defense. In this study, we have investigated the specificity and mechanism of activation of members of the c-Jun-NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK) subfamily of mitogen-activated protein kinases (MAPKs) in mouse macrophages in response to stimulation with TNFα. Exposure of macrophages to TNFα stimulated a preferential increase in catalytic activity of the p46 JNK/SAPK isoform compared with the p54 JNK/SAPK isoform as determined by: (i) separation of p46 and p54 JNK/SAPKs by anion exchange liquid chromatography and (ii) selective immunodepletion of the p46 JNK/SAPK from macrophage lysates. To investigate the level of regulation of p46 JNK/SAPK activation, we determined the ability of MKK4/SEK1/JNKK, an upstream regulator of JNK/SAPKs, to phosphorylate recombinant kinase-inactive p46 and p54 JNK/SAPKs. Endogenous MKK4 was able to transphosphorylate both isoforms. In addition, both the p46 and p54 JNK/SAPK isoforms were phosphorylated on their TPY motif in response to TNFα stimulation as reflected by immunoblotting with a phospho-specific antibody that recognizes both kinases. Collectively, these results suggest that the level of control of p46 JNK/SAPK activation is distal not only to MKK4 but also to the p54 JNK/SAPK. Preferential isoform activation within the JNK/SAPK subfamily of MAPKs may be an important mechanism through which TNFα regulates macrophage phenotypic heterogeneity and differentiation.