110 resultados para Zn(II)-diclofenac complex

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first Zn(II)-translocating P-type ATPase has been identified as the product of o732, a potential gene identified in the sequencing of the Escherichia coli genome. This gene, termed zntA, was disrupted by insertion of a kanamycin gene through homologous recombination. The mutant strain exhibited hypersensitivity to zinc and cadmium salts but not salts of other metals, suggesting a role in zinc homeostasis in E. coli. Everted membrane vesicles from a wild-type strain accumulated 65Zn(II) and 109Cd(II) by using ATP as an energy source. Transport was sensitive to vanadate, an inhibitor of P-type ATPases. Membrane vesicles from the zntA∷kan strain did not accumulate those metal ions. Both the sensitive phenotype and transport defect of the mutant were complemented by expression of zntA on a plasmid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Invariant chain (Ii) is a trimeric membrane protein which binds and stabilizes major histocompatibility complex class II heterodimers in the endoplasmic reticulum and lysosomal compartments of antigen-presenting cells. In concert with an intracellular class II-like molecule, HLA-DM, Ii seems to facilitate loading of conventional class II molecules with peptides before transport of the class II-peptide complex to the cell surface for recognition by T cells. The interaction of Ii with class II molecules is thought to be mediated in large part through a region of 24 amino acids (the class II-associated Ii peptide, CLIP) which binds as a cleaved moiety in the antigenic peptide-binding groove of class II molecules in HLA-DM-deficient cell lines. Here we use nuclear magnetic resonance techniques to demonstrate that a soluble recombinant Ii ectodomain contains significant disordered regions which probably include CLIP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcriptional activity of an in vitro assembled human interferon-β gene enhanceosome is highly synergistic. This synergy requires five distinct transcriptional activator proteins (ATF2/c-JUN, interferon regulatory factor 1, and p50/p65 of NF-κB), the high mobility group protein HMG I(Y), and the correct alignment of protein-binding sites on the face of the DNA double helix. Here, we investigate the mechanisms of enhanceosome-dependent transcriptional synergy during preinitiation complex assembly in vitro. We show that the stereospecific assembly of the enhanceosome is critical for the efficient recruitment of TFIIB into a template-committed TFIID-TFIIA-USA (upstream stimulatory activity complex) and for the subsequent recruitment of the RNA polymerase II holoenzyme complex. In addition, we provide evidence that recruitment of the holoenzyme by the enhanceosome is due, at least in part, to interactions between the enhanceosome and the transcriptional coactivator CREB, cAMP responsive element binding protein (CBP). These studies reveal a unique role of enhanceosomes in the cooperative assembly of the transcription machinery on the human interferon-β promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RAP74, the large subunit of transcription factor IIF, associates with a preinitiation complex containing RNA polymerase II (pol II) and other general initiation factors. We have mapped the location of RAP74 in close proximity to promoter DNA at similar distances both upstream and downstream of a DNA bend centered on the TATA box. Binding of RAP74 induces a conformational change that affects the position of pol II relative to that of the DNA. This reorganization of the preinitiation complex minimally requires the N-terminal region of RAP74 containing both its RAP30-binding domain and another region necessary for accurate transcription in vitro. We propose a role for RAP74 in controlling the topological organization of the pol II preinitiation complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Psorospermin is a plant natural product that shows significant in vivo activity against P388 mouse leukemia. The molecular basis for this selectivity is unknown, although psorospermin has been demonstrated to intercalate into DNA and alkylate N7 of guanine. Significantly, the alkylation reactivity of psorospermin at specific sites on DNA increased 25-fold in the presence of topoisomerase II. In addition, psorospermin trapped the topoisomerase II-cleaved complex formation at the same site. These results imply that the efficacy of psorospermin is related to its interaction with the topoisomerase II–DNA complex. Because thermal treatment of (N7 guanine)–DNA adducts leads to DNA strand breakage, we were able to determine the site of alkylation of psorospermin within the topoisomerase II gate site and infer that intercalation takes place at the gate site between base pairs at the +1 and +2 positions. These results provide not only additional mechanistic information on the mode of action of the anticancer agent psorospermin but also structural insights into the design of an additional class of topoisomerase II poisons. Because the alkylation site for psorospermin in the presence of topoisomerase II can be assigned unambiguously and the intercalation site inferred, this drug is a useful probe for other topoisomerase poisons where the sites for interaction are less well defined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The D2 polypeptide of the photosystem II (PSII) complex in the green alga Chlamydomonas reinhardtii is thought to be reversibly phosphorylated. By analogy to higher plants, the phosphorylation site is likely to be at residue threonine-2 (Thr-2). We have investigated the role of D2 phosphorylation by constructing two mutants in which residue Thr-2 has been replaced by either alanine or serine. Both mutants grew photoautotrophically at wild-type rates, and noninvasive biophysical measurements, including the decay of chlorophyll fluorescence, the peak temperature of thermoluminescence bands, and rates of oxygen evolution, indicate little perturbation to electron transfer through the PSII complex. The susceptibility of mutant PSII to photoinactivation as measured by the light-induced loss of PSII activity in whole cells in the presence of the protein-synthesis inhibitors chloramphenicol or lincomycin was similar to that of wild type. These results indicate that phosphorylation at Thr-2 is not required for PSII function or for protection from photoinactivation. In control experiments the phosphorylation of D2 in wild-type C. reinhardtii was examined by 32P labeling in vivo and in vitro. No evidence for the phosphorylation of D2 in the wild type could be obtained. [14C]Acetate-labeling experiments in the presence of an inhibitor of cytoplasmic protein synthesis also failed to identify phosphorylated (D2.1) and nonphosphorylated (D2.2) forms of D2 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results suggest that the existence of D2 phosphorylation in C. reinhardtii is still in question.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TFIIH is a multifunctional RNA polymerase II general initiation factor that includes two DNA helicases encoded by the Xeroderma pigmentosum complementation group B (XPB) and D (XPD) genes and a cyclin-dependent protein kinase encoded by the CDK7 gene. Previous studies have shown that the TFIIH XPB DNA helicase plays critical roles not only in transcription initiation, where it catalyzes ATP-dependent formation of the open complex, but also in efficient promoter escape, where it suppresses arrest of very early RNA polymerase II elongation intermediates. In this report, we present evidence that ATP-dependent TFIIH action in transcription initiation and promoter escape requires distinct regions of the DNA template; these regions are well separated from the promoter region unwound by the XPB DNA helicase and extend, respectively, ≈23–39 and ≈39–50 bp downstream from the transcriptional start site. Taken together, our findings bring to light a role for promoter DNA in TFIIH action and are consistent with the model that TFIIH translocates along promoter DNA ahead of the RNA polymerase II elongation complex until polymerase has escaped the promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine if nitration of tyrosine residues by peroxynitrite (PN), which can be generated endogenously, can disrupt the phosphorylation of tyrosine residues in proteins involved in cell signaling networks, we studied the effect of PN-promoted nitration of tyrosine residues in a pentadecameric peptide, cdc2(6-20)NH2, on the ability of the peptide to be phosphorylated. cdc2(6-20)NH2 corresponds to the tyrosine phosphorylation site of p34cdc2 kinase, which is phosphorylated by lck kinase (lymphocyte-specific tyrosine kinase, p56lck). PN nitrates both Tyr-15 and Tyr-19 of the peptide in phosphate buffer (pH 7.5) at 37 degrees C. Nitration of Tyr-15. which is the phosphorylated amino acid residue, inhibits completely the phosphorylation of the peptide. The nitration reaction is enhanced by either Fe(III)EDTA or Cu(II)-Zn(II)-superoxide dismutase (Cu,Zn-SOD). The kinetic data are consistent with the view that reactions of Fe(111)EDTA or Cu,Zn-SOD with the cis form of PN yield complexes in which PN decomposes more slowly to form N02+, the nitrating agent. Thus, the nitration efficiency of PN is enhanced. These results are discussed from the point of view that PN-promoted nitration will result in permanent impairment of cyclic cascades that control signal transduction processes and regulate cell cycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcriptional transactivator (Tas) of simian foamy virus type 1 strongly augments gene expression directed by both the promoter in the viral long terminal repeat and the newly discovered internal promoter located within the env gene. A region of 121 bp, located immediately 5' to the TATA box in the internal promoter, is required for transactivation by Tas. The present study aimed to identify the precise Tas-responsive target(s) in this region and to determine the role of Tas in transcriptional regulation. By analysis of both clustered-site mutations and hybrid promoters in transient expression assays in murine and simian cells, two separate sequence elements within this 121-bp region were shown to be Tas-dependent transcriptional enhancers. These targets, each < 30 bp in length and displaying no apparent sequence homology one to the other, are designated the promoter-proximal and promoter-distal elements. By means of the gel electrophoresis mobility-shift assays, using purified glutathione S-transferase-Tas fusion protein expressed in Escherichia coli, the target proximal to the TATA box exhibited strong binding to glutathione S-transferase-Tas, whereas the distal element appears not to bind. In addition, footprint analysis revealed that 26 bp in the promoter proximal element was protected by glutathione S-transferase-Tas from DNase I. We propose a model for transactivation of the simian foamy virus type 1 internal promoter in which Tas interacts directly with the proximal target element positioned immediately 5' to the TATA box. In this model, Tas attached to this element is presumed to interact with a component(s) of the cellular RNA polymerase II initiation complex and thereby enhance transcription directed by the viral internal promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

General transcription factor SIII, a heterotrimer composed of 110-kDa (p110), 18-kDa (p18), and 15-kDa (p15) subunits, increases the catalytic rate of transcribing RNA polymerase II by suppressing transient pausing by polymerase at multiple sites on DNA templates. Here we report molecular cloning and biochemical characterization of the SIII p18 subunit, which is found to be a member of the ubiquitin homology (UbH) gene family and functions as a positive regulatory subunit of SIII. p18 is a 118-amino acid protein composed of an 84-residue N-terminal UbH domain fused to a 34-residue C-terminal tail. Mechanistic studies indicate that p18 activates SIII transcriptional activity above a basal level inherent in the SIII p110 and p15 subunits. Taken together, these findings establish a role for p18 in regulating the activity of the RNA polymerase II elongation complex, and they bring to light a function for a UbH domain protein in transcriptional regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using tobacco plants that had been transformed with the cDNA for glycerol-3-phosphate acyltransferase, we have demonstrated that chilling tolerance is affected by the levels of unsaturated membrane lipids. In the present study, we examined the effects of the transformation of tobacco plants with cDNA for glycerol-3-phosphate acyltransferase from squash on the unsaturation of fatty acids in thylakoid membrane lipids and the response of photosynthesis to various temperatures. Of the four major lipid classes isolated from the thylakoid membranes, phosphatidylglycerol showed the most conspicuous decrease in the level of unsaturation in the transformed plants. The isolated thylakoid membranes from wild-type and transgenic plants did not significantly differ from each other in terms of the sensitivity of photosystem II to high and low temperatures and also to photoinhibition. However, leaves of the transformed plants were more sensitive to photoinhibition than those of wild-type plants. Moreover, the recovery of photosynthesis from photoinhibition in leaves of wild-type plants was faster than that in leaves of the transgenic tobacco plants. These results suggest that unsaturation of fatty acids of phosphatidylglycerol in thylakoid membranes stabilizes the photosynthetic machinery against low-temperature photoinhibition by accelerating the recovery of the photosystem II protein complex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The generation of transport vesicles at the endoplasmic reticulum (ER) depends on cytosolic proteins, which, in the form of subcomplexes (Sec23p/Sec24p; Sec13p/Sec31p) are recruited to the ER membrane by GTP-bound Sar1p and form the coat protein complex II (COPII). Using affinity chromatography and two-hybrid analyses, we found that the essential COPII component Sec24p, but not Sec23p, binds to the cis-Golgi syntaxin Sed5p. Sec24p/Sed5p interaction in vitro was not dependent on the presence of [Sar1p⋅GTP]. The binding of Sec24p to Sed5p is specific; none of the other seven yeast syntaxins bound to this COPII component. Whereas the interaction site of Sec23p is within the N-terminal half of the 926-aa-long Sec24p (amino acid residues 56–549), Sed5p binds to the N- and C-terminal halves of the protein. Destruction by mutagenesis of a potential zinc finger within the N-terminal half of Sec24p led to a nonfunctional protein that was still able to bind Sec23p and Sed5p. Sec24p/Sed5p binding might be relevant for cargo selection during transport-vesicle formation and/or for vesicle targeting to the cis-Golgi.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The experiments presented in this report were designed to specifically examine the role of CD4–major histocompatibility complex (MHC) class II interactions during T cell development in vivo. We have generated transgenic mice expressing class II molecules that cannot interact with CD4 but that are otherwise competent to present peptides to the T cell receptor. MHC class II expression was reconstituted in Aβ gene knock-out mice by injection of a transgenic construct encoding either the wild-type I-Aβb protein or a construct encoding a mutation designed to specifically disrupt binding to the CD4 molecule. We demonstrate that the mutation, EA137 and VA142 in the β2 domain of I-Ab, is sufficient to disrupt CD4–MHC class II interactions in vivo. Furthermore, we show that this interaction is critical for the efficient selection of a complete repertoire of mature CD4+ T helper cells as evidenced by drastically reduced numbers of conventional CD4+ T cells in animals expressing the EA137/VA142 mutant I-Ab and by the failure to positively select the transgenic AND T cell receptor on the mutated I-Ab. These results underscore the importance of the CD4–class II interaction in the development of mature peripheral CD4+ T cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antigen presentation by major histocompatibility complex (MHC) class II molecules requires the participation of different proteases in the endocytic route to degrade endocytosed antigens as well as the MHC class II-associated invariant chain (Ii). Thus far, only the cysteine protease cathepsin (Cat) S appears essential for complete destruction of Ii. The enzymes involved in degradation of the antigens themselves remain to be identified. Degradation of antigens in vitro and experiments using protease inhibitors have suggested that Cat B and Cat D, two major aspartyl and cysteine proteases, respectively, are involved in antigen degradation. We have analyzed the antigen-presenting properties of cells derived from mice deficient in either Cat B or Cat D. Although the absence of these proteases provoked a modest shift in the efficiency of presentation of some antigenic determinants, the overall capacity of Cat B−/− or Cat D−/− antigen-presenting cells was unaffected. Degradation of Ii proceeded normally in Cat B−/− splenocytes, as it did in Cat D−/− cells. We conclude that neither Cat B nor Cat D are essential for MHC class II-mediated antigen presentation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protective/suppressive major histocompatibility complex (MHC) class II alleles have been identified in humans and mice where they exert a disease-protective and immunosuppressive effect. Various modes of action have been proposed, among them differential expression of MHC class II genes in different types of antigen-presenting cells impacting on the T helper type 1 (Th1)–Th2 balance. To test this possibility, the expression of H-2 molecules from the four haplotypes H-2b, H-2d, H-2k, and H-2q was determined on bone marrow-derived macrophages (BMDMs) and splenic B cells. The I-Ab and I-Ek molecules, both well characterized as protective/suppressive, are expressed at a high level on almost all CD11b+ BMDMs for 5–8 days, after which expression slowly declines. In contrast, I-Ad, I-Ak, and I-Aq expression is lower, peaks over a shorter period, and declines more rapidly. No differential expression could be detected on B cells. In addition, the differential MHC class II expression found on macrophages skews the cytokine response of T cells as shown by an in vitro restimulation assay with BMDMs as antigen-presenting cells. The results indicate that macrophages of the protective/suppressive haplotypes express MHC class II molecules at a high level and exert Th1 bias, whereas low-level expression favors a Th2 response. We suggest that the extent of expression of the class II gene gates the back signal from T cells and in this way controls the activity of macrophages. This effect mediated by polymorphic nonexon segments of MHC class II genes may play a role in determining disease susceptibility in humans and mice.