13 resultados para Zebra danio
em National Center for Biotechnology Information - NCBI
Resumo:
A juvenile male zebra finch, Taeniopygia guttata, kept singly with its father develops a fairly complete imitation of the father’s song. The imitation is less complete when other male siblings are present, possibly because as imitation commences, model abundance increases. Here we examine the consequences of allowing more or less access to a song model. Young males heard a brief song playback when they pecked at a key, but different males were allowed to hear different numbers of playbacks per day. Using an automated procedure that scored the similarity between model and pupil songs, we discovered that 40 playbacks of the song motif per day, lasting a total of 30 sec, resulted in a fairly complete imitation. More exposure led to less complete imitation. Vocal imitation often may reflect the interaction of diverse influences. Among these, we should now include the possible inhibitory effect of model overabundance, which may foster individual identity and explain the vocal diversity found in zebra finches and other songbirds.
Resumo:
Current theories of sexual differentiation maintain that ovarian estrogen prevents masculine development of the copulatory system in birds, whereas estrogen derived from testicular androgens promotes masculine sexual differentiation of neuroanatomy and sexual behavior in mammals. Paradoxically, some data suggest that the neural song system in zebra finches follows the mammalian pattern with estrogenic metabolites of testicular secretions causing masculine development. To test whether the removal of estrogen from males during early development would prevent the development of masculine song systems, zebra finches were treated embryonically with an inhibitor of estrogen synthesis. In addition, this treatment in genetic female zebra finches induced both functional ovarian and testicular tissue to develop, thus allowing the assessment of the direct effects of testicular secretions on song system development. In males, the inhibition of estrogen synthesis before hatching had a small but significant effect in demasculinizing one aspect of the neural song system. In treated females, the song systems remained morphologically feminine. These results suggest that masculinization of the song system is not determined solely by testicular androgens or their estrogenic metabolites.
Resumo:
DNA is the first SINE isolated from zebrafish (Danio rerio) exhibiting all the hallmarks of these tRNA-derived elements. DANA is unique in its clearly defined substructure of distinct cassettes. In contrast to generic SINE elements, DANA appears to have been assembled by insertions of short sequences into a progenitor, tRNA-derived element. Once associated with each other, these subunits were amplified as a new transposable element with such a remarkable success that DANA-related sequences comprise approximately 10% of the modern zebrafish genome. At least some of the sequences comprised by the full-length element were capable of movement, forming a new group of mobile, composite transposons, one of which caused an insertional mutation in the zebrafish no tail gene. Being present only in the genus Danio, and estimated to be as old as the genus itself, DANA may have played a role in Danio speciation by massive amplification and genome-wide dispersion. There are extensive DNA polymorphisms between zebrafish populations and strains detected by PCR amplification using primers specific to DANA, suggesting that the DANA element will be useful as a molecular tool for genetic and phylogenetic analyses.
Resumo:
Our current understanding of the sound-generating mechanism in the songbird vocal organ, the syrinx, is based on indirect evidence and theoretical treatments. The classical avian model of sound production postulates that the medial tympaniform membranes (MTM) are the principal sound generators. We tested the role of the MTM in sound generation and studied the songbird syrinx more directly by filming it endoscopically. After we surgically incapacitated the MTM as a vibratory source, zebra finches and cardinals were not only able to vocalize, but sang nearly normal song. This result shows clearly that the MTM are not the principal sound source. The endoscopic images of the intact songbird syrinx during spontaneous and brain stimulation-induced vocalizations illustrate the dynamics of syringeal reconfiguration before phonation and suggest a different model for sound production. Phonation is initiated by rostrad movement and stretching of the syrinx. At the same time, the syrinx is closed through movement of two soft tissue masses, the medial and lateral labia, into the bronchial lumen. Sound production always is accompanied by vibratory motions of both labia, indicating that these vibrations may be the sound source. However, because of the low temporal resolution of the imaging system, the frequency and phase of labial vibrations could not be assessed in relation to that of the generated sound. Nevertheless, in contrast to the previous model, these observations show that both labia contribute to aperture control and strongly suggest that they play an important role as principal sound generators.
Resumo:
We have examined the behavior of demembranated sperm heads when injected into the germinal vesicle (GV) of amphibian oocytes. Xenopus sperm heads injected into Xenopus GVs swelled immediately and within hours began to stain with an antibody against RNA polymerase II (Pol II). Over time each sperm head became a loose mass of chromosome-like threads, which by 24–48 h resolved into individually recognizable lampbrush chromosomes (LBCs). Although LBCs derived from sperm are unreplicated single chromatids, their morphology and immunofluorescent staining properties were strikingly similar to those of the endogenous lampbrush bivalents. They displayed typical transcriptionally active loops extending from an axis of condensed chromomeres, as well as locus-specific “landmarks.” Experiments with [3H]GTP and actinomycin D demonstrated that transcription was not necessary for the initial swelling of the sperm heads and acquisition of Pol II but was required for maintenance of the lampbrush loops. Splicing was not required at any stage during formation of sperm LBCs. When Xenopus sperm heads were injected into GVs of the newt Notophthalmus, the resulting sperm LBCs displayed very long loops with pronounced Pol II axes, like those of the endogenous newt LBCs; as expected, they stained with antibodies against newt-specific proteins. Other heterologous injections, including sperm heads of the frog Rana pipiens and the zebrafish Danio rerio in Xenopus GVs, confirm that LBCs can be derived from taxonomically distant organisms. The GV system should help identify both cis- and trans-acting factors needed to convert condensed chromatin into transcriptionally active LBCs. It may also be useful in producing cytologically analyzable chromosomes from organisms whose oocytes do not go through a typical lampbrush phase or cannot be manipulated by current techniques.
Resumo:
An extensive, highly diversified multigene family of novel immune-type receptor (nitr) genes has been defined in Danio rerio (zebrafish). The genes are predicted to encode type I transmembrane glycoproteins consisting of extracellular variable (V) and V-like C2 (V/C2) domains, a transmembrane region and a cytoplasmic tail. All of the genes examined encode immunoreceptor tyrosine-based inhibition motifs in the cytoplasmic tail. Radiation hybrid panel mapping and analysis of a deletion mutant line (b240) indicate that a minimum of ≈40 nitr genes are contiguous in the genome and span ≈0.6 Mb near the top of zebrafish linkage group 7. One flanking region of the nitr gene complex shares conserved synteny with a region of mouse chromosome 7, which shares conserved synteny with human 19q13.3-q13.4 that encodes the leukocyte receptor cluster. Antibody-induced crosslinking of Nitrs that have been introduced into a human natural killer cell line inhibits the phosphorylation of mitogen-activated protein kinase that is triggered by natural killer-sensitive tumor target cells. Nitrs likely represent intermediates in the evolution of the leukocyte receptor cluster.
Resumo:
Continuous exposure to oxygen is essential for nearly all vertebrates. We found that embryos of the zebrafish Danio rerio can survive for 24 h in the absence of oxygen (anoxia, 0% O2). In anoxia, zebrafish entered a state of suspended animation where all microscopically observable movement ceased, including cell division, developmental progression, and motility. Animals that had developed a heartbeat before anoxic exposure showed no evidence of a heartbeat until return to terrestrial atmosphere (normoxia, 20.8% O2). In analyzing cell-cycle changes of rapidly dividing blastomeres exposed to anoxia, we found that no cells arrested in mitosis. This is in sharp contrast to similarly staged normoxic embryos that consistently contain more than 15% of cells in mitosis. Flow cytometry analysis revealed that blastomeres arrested during the S and G2 phases of the cell cycle. This work indicates that survival of oxygen deprivation in vertebrates involves the reduction of diverse processes, such as cardiac function and cell-cycle progression, thus allowing energy supply to be matched by energy demands.
Resumo:
We have identified a new family of Tc1-like transposons in the zebrafish, Danio rerio. The sequence of a candidate active transposon, deduced from sample Tzf elements, shows limited resemblance to the previously described Tdr1 elements of zebrafish. Both the Tzf and the Tdr elements are extremely abundant in zebrafish. We describe here a general strategy for detecting transposition events in a complex genome and demonstrate its utility by selectively monitoring hundreds of potentially active Tzf copies in the zebrafish genome against a background of other related elements. We have followed members of a zebrafish pedigree, using this two-dimensional transposon display strategy, to identify the first examples of active transposition of such elements in vertebrates.
Resumo:
Auditory responses in the caudomedial neostriatum (NCM) of the zebra finch (Taeniopygia guttata) forebrain habituate to repeated presentations of a novel conspecific song. This habituation is long lasting and specific to individual stimuli. We here test the acoustic and ethological basis of this stimulus-specific habituation by recording extracellular multiunit activity in the NCM of awake male and female zebra finches presented with a variety of conspecific and heterospecific vocalizations, white noise, and tones. Initial responses to conspecific song and calls and to human speech were higher than responses to the other stimuli. Immediate habituation rates were high for all novel stimuli except tones, which habituated at a lower rate. Habituation to conspecific calls and songs outlasted habituation to other stimuli. The extent of immediate habituation induced by a particular novel song was not diminished when other conspecific songs were presented in alternation. In addition, the persistence of habituation was not diminished by exposure to other songs before testing, nor was it influenced by gender or laterality. Our results suggest that the NCM is specialized for remembering the calls and songs of many individual conspecifics.
Resumo:
The C32 isogenic homozygous diploid (IHD) strain of the zebrafish (Danio rerio) was found to be polyallelic at a malate dehydrogenase locus (sMdh-A). A variant allele is thought to have arisen via mutation within the past 10 bisexual generations that have maintained the strain since its last gynogenetic cloning event; this unique allele now predominates at the sMdh-A locus. The estimated mutation rate in this species is sufficiently high that long-term genetic homogeneity of its IHD clones cannot be assumed. Researchers using such bisexually maintained clones should be aware that they are not necessarily using genetically uniform subjects. Genetic uniformity of cloned IHD zebrafish will be maximized if experimental subjects are obtained soon after a cloning event.
Resumo:
A technique is described that greatly increases the efficiency of recovering specific locus point mutations in zebrafish (Danio rerio). Founder individuals that were mosaic for point mutations were produced by mutagenizing postmeiotic gametes with the alkylating agent N-ethyl-N-nitrosourea. Under optimal conditions, each founder carried an average of 10 mutations affecting genes required for embryogenesis. Moreover, approximately 2% of these founders transmitted new mutations at any prespecified pigmentation locus. Analyses of new pigmentation mutations confirmed that most were likely to be point mutations. Thus, mutagenesis of postmeiotic gametes with N-ethyl-N-nitrosourea yielded frequencies of point mutations at specific loci that were 10- to 15-fold higher than previously achieved in zebrafish. Our procedure should, therefore, greatly facilitate recovery of multiple mutant alleles at any locus of interest.
Resumo:
The song system of birds consists of several neural pathways. One of these, the anterior forebrain pathway, is necessary for the acquisition but not for the production of learned song in zebra finches. It has been shown that the anterior forebrain pathway sequentially connects the following nuclei: the high vocal center, area X of lobus parolfactorius, the medial portion of the dorsolateral thalamic nucleus, the lateral magnocellular nucleus of anterior neostriatum (IMAN), and the robust nucleus of the archistriatum (RA). We now show in zebra finches (Taeniopygia guttata) that IMAN cells that project to RA also project to area X, forming a feedback loop within the anterior forebrain pathway. The axonal endings of the IMAN projection into area X form cohesive and distinct domains. Small injections of tracer in subregions of area X backfill a spatially restricted subset of cells in IMAN, that, in turn, send projections to RA that are arranged in horizontal layers, which may correspond to the functional representation of vocal tract muscles demonstrated by others. We infer from our data that there is a myotopic representation throughout the anterior forebrain pathway. In addition, we suggest that the parcellation of area X into smaller domains by the projection from IMAN highlights a functional architecture within X, which might correspond to units of motor control, to the representation of acoustic features of song, or both.
Resumo:
Earlier work showed that playbacks of conspecific song induce expression of the immediate early gene ZENK in the caudo-medial neostriatum (NCM) of awake male zebra finches and that this response disappears with repeated presentations of the same stimulus. In the present study, we investigated whether repetitions of a song stimulus also elicited a decrement in the electrophysiological responses in the NCM neurons of these birds. Multiunit auditory responses in NCM were initially vigorous, but their amplitude decreased (habituated) rapidly to repeated stimulation, declining to about 40% of the initial response during the first 50 iterations. A similar time course of change was seen at the single unit level. This habituation occurred specifically for each song presented but did not occur when pure tones were used as a stimulus. Habituation to conspecific, but not heterospecific, song was retained for 20 h or longer. Injections of inhibitors of protein or RNA synthesis at the recording site did not affect the initial habituation to a novel stimulus, but these drugs blocked the long-term habituation when injected at 0.5-3 h and at 5.5-7 h after the first exposure to the stimulus. Thus, at least two waves of gene induction appear to be necessary for long-lasting habituation to a particular song.