3 resultados para Yops

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogenic Yersinia spp. carry a large common plasmid that encodes a number of essential virulence determinants. Included in these factors are the Yersinia-secreted proteins called Yops. We analyzed the consequences of wild-type and mutant strains of Yersinia pseudotuberculosis interactions with the macrophage cell line RAW264.7 and murine bone marrow-derived macrophages. Wild-type Y. pseudotuberculosis kills ≈70% of infected RAW264.7 macrophages and marrow-derived macrophages after an 8-h infection. We show that the cell death mediated by Y. pseudotuberculosis is apoptosis. Mutant Y. pseudotuberculosis that do not make any Yop proteins no longer cause host cell death. Attachment to host cells via invasin or YadA is necessary for the cell death phenotype. Several Yop mutant strains that fail to express one or more Yop proteins were engineered and then characterized for their ability to cause host cell death. A mutant with a polar insertion in YpkA Ser/Thr kinase that does not express YpkA or YopJ is no longer able to cause apoptosis. In contrast, a mutant no longer making YopE or YopH (a tyrosine phosphatase) induces apoptosis in macrophages similar to wild type. When yopJ is added in trans to the ypkAyopJ mutant, the ability of this strain to signal programmed cell death in macrophages is restored. Thus, YopJ is necessary for inducing apoptosis. The ability of Y. pseudotuberculosis to promote apoptosis of macrophages in cell culture suggests that this process is important for the establishment of infection in the host and for evasion of the host immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 70-kb virulence plasmid (sometimes called pYV) enables Yersinia spp. to survive and multiply in the lymphoid tissues of their host. It encodes the Yop virulon, a system consisting of secreted proteins called Yops and their dedicated type III secretion apparatus called Ysc. The Ysc apparatus forms a channel composed of 29 proteins. Of these, 10 have counterparts in almost every type III system. Secretion of some Yops requires the assistance, in the bacterial cytosol, of small individual chaperones called the Syc proteins. These chaperones act as bodyguards or secretion pilots for their partner Yop. Yop proteins fall into two categories. Some are intracellular effectors, whereas the others are “translocators” needed to deliver the effectors across the eukaryotic plasma membrane, into eukaryotic cells. The translocators (YopB, YopD, LcrV) form a pore of 16–23 Å in the eukaryotic cell plasma membrane. The effector Yops are YopE, YopH, YpkA/YopO, YopP/YopJ, YopM, and YopT. YopH is a powerful phosphotyrosine phosphatase playing an antiphagocytic role by dephosphorylating several focal adhesion proteins. YopE and YopT contribute to antiphagocytic effects by inactivating GTPases controlling cytoskeleton dynamics. YopP/YopJ plays an anti-inflammatory role by preventing the activation of the transcription factor NF-κB. It also induces rapid apoptosis of macrophages. Less is known about the role of the phosphoserine kinase YopO/YpkA and YopM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogenic yersiniae secrete a set of antihost proteins, called Yops, by a type III secretion mechanism. Upon infection of cultured epithelial cells, extracellular Yersinia pseudotuberculosis and Yersinia enterocolitica translocate cytotoxin YopE across the host cell plasma membrane. Several lines of evidence suggest that tyrosine phosphatase YopH follows the same pathway. We analyzed internalization of YopE and YopH into murine PU5-1.8 macrophages by using recombinant Y. enterocolitica producing truncated YopE and YopH proteins fused to a calmodulin-dependent adenylate cyclase. The YopE-cyclase and YopH-cyclase hybrids were readily secreted by Y. enterocolitica. The N-terminal domain required for secretion was not longer than 15 residues of YopE and 17 residues of YopH. Internalization into eukaryotic cells, revealed by cAMP production, only required the N-terminal 50 amino acid residues of YopE and the N-terminal 71 amino acid residues of YopH. YopE and YopH are thus modular proteins composed of a secretion domain, a translocation domain, and an effector domain. Translocation of YopE and YopH across host cell's membranes was also dependent on the secretion of YopB and YopD by the same bacterium. The cyclase fusion approach could be readily extended to study the fate of other proteins secreted by invasive bacterial pathogens.