278 resultados para YMCA of the USA.
em National Center for Biotechnology Information - NCBI
Resumo:
RNA secondary structures (hairpins) that form as the nascent RNA emerges from RNA polymerase are important components of many signals that regulate transcription, including some pause sites, all ρ-independent terminators, and some antiterminators. At the his leader pause site, a 5-bp-stem, 8-nt-loop pause RNA hairpin forms 11 nt from the RNA 3′ end and stabilizes a transcription complex conformation slow to react with NTP substrate. This stabilization appears to depend at least in part on an interaction with RNA polymerase. We tested for RNA hairpin interaction with the paused polymerase by crosslinking 5-iodoUMP positioned specifically in the hairpin loop. In the paused conformation, strong and unusual crosslinking of the pause hairpin to β904–950 replaced crosslinking to β′ and to other parts of β that occurred in nonpaused complexes prior to hairpin formation. These changes in nascent RNA interactions may inhibit reactive alignment of the RNA 3′ end in the paused complex and be related to events at ρ-independent terminators.
Resumo:
The human androgen receptor (AR) is a ligand-activated transcription factor that regulates genes important for male sexual differentiation and development. To better understand the role of the receptor as a transcription factor we have studied the mechanism of action of the N-terminal transactivation function. In a protein–protein interaction assay the AR N terminus (amino acids 142–485) selectively bound to the basal transcription factors TFIIF and the TATA-box-binding protein (TBP). Reconstitution of the transactivation activity in vitro revealed that AR142–485 fused to the LexA protein DNA-binding domain was competent to activate a reporter gene in the presence of a competing DNA template lacking LexA binding sites. Furthermore, consistent with direct interaction with basal transcription factors, addition of recombinant TFIIF relieved squelching of basal transcription by AR142–485. Taken together these results suggest that one mechanism of transcriptional activation by the AR involves binding to TFIIF and recruitment of the transcriptional machinery.
Resumo:
Chorismate mutase acts at the first branchpoint of aromatic amino acid biosynthesis and catalyzes the conversion of chorismate to prephenate. Comparison of the x-ray structures of allosteric chorismate mutase from the yeast Saccharomyces cerevisiae with Escherichia coli chorismate mutase/prephenate dehydratase suggested conserved active sites between both enzymes. We have replaced all critical amino acid residues, Arg-16, Arg-157, Lys-168, Glu-198, Thr-242, and Glu-246, of yeast chorismate mutase by aliphatic amino acid residues. The resulting enzymes exhibit the necessity of these residues for catalytic function and provide evidence of their localization at the active site. Unlike some bacterial enzymes, yeast chorismate mutase has highest activity at acidic pH values. Replacement of Glu-246 in the yeast chorismate mutase by glutamine changes the pH optimum for activity of the enzyme from a narrow to a broad pH range. These data suggest that Glu-246 in the catalytic center must be protonated for maximum catalysis and restricts optimal activity of the enzyme to low pH.
Resumo:
Many insects feed on blood or tissue from mammalian hosts. One potential strategy for the control of these insects is to vaccinate the host with antigens derived from the insect. The larvae of the fly Lucilia cuprina feed on ovine tissue and tissue fluids causing a cutaneous myiasis associated with considerable host morbidity and mortality. A candidate vaccine antigen, peritrophin 95, was purified from the peritrophic membrane, which lines the gut of these larvae. Serum from sheep vaccinated with peritrophin 95 inhibited growth of first-instar L. cuprina larvae that fed on this serum. Growth inhibition was probably caused by antibody-mediated blockage of the normally semipermeable peritrophic membrane and the subsequent development of an impervious layer of undefined composition on the gut lumen side of the peritrophic membrane that restricted access of nutrients to the larvae. The amino acid sequence of peritrophin 95 was determined by cloning the DNA complementary to its mRNA. The deduced amino acid sequence codes for a secreted protein containing a distinct Cys-rich domain of 317 amino acids followed by a mucin-like domain of 139 amino acids. The Cys-rich domain may be involved in binding chitin. This report describes a novel immunological strategy for the potential control of L. cuprina larvae that may have general application to the control of other insect pests.
Resumo:
Myosin I heavy chain kinase from Acanthamoeba castellanii is activated in vitro by autophosphorylation (8–10 mol of P per mol). The catalytically active C-terminal domain produced by trypsin cleavage of the phosphorylated kinase contains 2–3 mol of P per mol. However, the catalytic domain expressed in a baculovirus–insect cell system is fully active as isolated without autophosphorylation in vitro. We now show that the expressed catalytic domain is inactivated by incubation with acid phosphatase and regains activity upon autophosphorylation. The state of phosphorylation of all of the hydroxyamino acids in the catalytic domain were determined by mass spectrometry of unfractionated protease digests. Ser-627 was phosphorylated in the active, expressed catalytic domain, lost its phosphate when the protein was incubated with phosphatase, and was rephosphorylated when the dephosphorylated protein was incubated with ATP. No other residue was significantly phosphorylated in any of the three samples. Thus, phosphorylation of Ser-627, which is in the same position as the Ser and Thr residues that are phosphorylated in many other kinases, is necessary and sufficient for full activity of the catalytic domain. Ser-627 is also phosphorylated when full-length, native kinase is activated by autophosphorylation.
Resumo:
A cDNA from a novel Ca2+-dependent member of the mitochondrial solute carrier superfamily was isolated from a rabbit small intestinal cDNA library. The full-length cDNA clone was 3,298 nt long and coded for a protein of 475 amino acids, with four elongation factor-hand motifs located in the N-terminal half of the molecule. The 25-kDa N-terminal polypeptide was expressed in Escherichia coli, and it was demonstrated that it bound Ca2+, undergoing a reversible and specific conformational change as a result. The conformation of the polypeptide was sensitive to Ca2+ which was bound with high affinity (Kd ≈ 0.37 μM), the apparent Hill coefficient for Ca2+-induced changes being about 2.0. The deduced amino acid sequence of the C-terminal half of the molecule revealed 78% homology to Grave disease carrier protein and 67% homology to human ADP/ATP translocase; this sequence homology identified the protein as a new member of the mitochondrial transporter superfamily. Northern blot analysis revealed the presence of a single transcript of about 3,500 bases, and low expression of the transporter could be detected in the kidney but none in the liver. The main site of expression was the colon with smaller amounts found in the small intestine proximal to the ileum. Immunoelectron microscopy localized the transporter in the peroxisome, although a minor fraction was found in the mitochondria. The Ca2+ binding N-terminal half of the transporter faces the cytosol.
Resumo:
Surmises of how myosin subfragment 1 (S1) interacts with actin filaments in muscle contraction rest upon knowing the relative arrangement of the two proteins. Although there exist crystallographic structures for both S1 and actin, as well as electron microscopy data for the acto–S1 complex (AS1), modeling of this arrangement has so far only been done “by eye.” Here we report fitted AS1 structures obtained using a quantitative method that is both more objective and makes more complete use of the data. Using undistorted crystallographic results, the best-fit AS1 structure shows significant differences from that obtained by visual fitting. The best fit is produced using the F-actin model of Holmes et al. [Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. (1990) Nature (London) 347, 44–49]. S1 residues at the AS1 interface are now found at a higher radius as well as being translated axially and rotated azimuthally. Fits using S1 plus loops missing from the crystal structure were achieved using a homology search method to predict loop structures. These improved fits favor an arrangement in which the loop at the 50- to 20-kDa domain junction of S1 is located near the N terminus of actin. Rigid-body movements of the lower 50-kDa domain, which further improve the fit, produce closure of the large 50-kDa domain cleft and bring conserved residues in the lower 50-kDa domain into an apparently appropriate orientation for close interaction with actin. This finding supports the idea that binding of ATP to AS1 at the end of the ATPase cycle disrupts the actin binding site by changing the conformation of the 50-kDa cleft of S1.
Resumo:
Transport of peptides across the membrane of the endoplasmic reticulum for assembly with MHC class I molecules is an essential step in antigen presentation to cytotoxic T cells. This task is performed by the major histocompatibility complex-encoded transporter associated with antigen processing (TAP). Using a combinatorial approach we have analyzed the substrate specificity of human TAP at high resolution and in the absence of any given sequence context, revealing the contribution of each peptide residue in stabilizing binding to TAP. Human TAP was found to be highly selective with peptide affinities covering at least three orders of magnitude. Interestingly, the selectivity is not equally distributed over the substrate. Only the N-terminal three positions and the C-terminal residue are critical, whereas effects from other peptide positions are negligible. A major influence from the peptide backbone was uncovered by peptide scans and libraries containing d amino acids. Again, independent of peptide length, critical positions were clustered near the peptide termini. These approaches demonstrate that human TAP is selective, with residues determining the affinity located in distinct regions, and point to the role of the peptide backbone in binding to TAP. This binding mode of TAP has implications in an optimized repertoire selection and in a coevolution with the major histocompatibility complex/T cell receptor complex.
Resumo:
Complete resolution of the amide resonances in a three-dimensional solid-state NMR correlation spectrum of a uniformly 15N-labeled membrane protein in oriented phospholipid bilayers is demonstrated. The three orientationally dependent frequencies, 1H chemical shift, 1H–15N dipolar coupling, and 15N chemical shift, associated with each amide resonance are responsible for resolution among resonances and provide sufficient angular restrictions for protein structure determination. Because the protein is completely immobilized by the phospholipids on the relevant NMR time scales (10 kHz), the linewidths will not degrade in the spectra of larger proteins. Therefore, these results demonstrate that solid-state NMR experiments can overcome the correlation time problem and extend the range of proteins that can have their structures determined by NMR spectroscopy to include uniformly 15N-labeled membrane proteins in phospholipid bilayers.
Resumo:
The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cytochrome c oxidase from Rhodobacter sphaeroides. A photoelectric technique was used to monitor the time-resolved electrogenic proton transfer steps associated with the photo-induced reduction of the ferryl-oxo form of heme a3 (Fe4+ = O2−) to the oxidized form (Fe3+OH−). This redox step requires the delivery of a “chemical” H+ to protonate the reduced oxygen atom and is also coupled to proton pumping. It is found that mutations in the K channel (K362M and T359A) have virtually no effect on the ferryl-oxo-to-oxidized (F-to-Ox) transition, although steady-state turnover is severely limited. In contrast, electrogenic proton transfer at this step is strongly suppressed by mutations in the D channel. The results strongly suggest that the functional roles of the two channels are not the separate delivery of chemical or pumped protons, as proposed recently [Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995) Nature (London) 376, 660–669]. The D channel is likely to be involved in the uptake of both “chemical” and “pumped” protons in the F-to-Ox transition, whereas the K channel is probably idle at this partial reaction and is likely to be used for loading the enzyme with protons at some earlier steps of the catalytic cycle. This conclusion agrees with different redox states of heme a3 in the K362M and E286Q mutants under aerobic steady-state turnover conditions.
Resumo:
The phosphorelay signal transduction system activates developmental transcription in sporulation of Bacillus subtilis by phosphorylation of aspartyl residues of the Spo0F and Spo0A response regulators. The phosphorylation level of these response regulators is determined by the opposing activities of protein kinases and protein aspartate phosphatases that interpret positive and negative signals for development in a signal integration circuit. The RapA protein aspartate phosphatase of the phosphorelay is regulated by a peptide that directly inhibits its activity. This peptide is proteolytically processed from an inactive pre-inhibitor protein encoded in the phrA gene. The pre-inhibitor is cleaved by the protein export apparatus to a putative pro-inhibitor that is further processed to the active inhibitor peptide and internalized by the oligopeptide permease. This export–import circuit is postulated to be a mechanism for timing phosphatase activity where the processing enzymes regulate the rate of formation of the active inhibitor. The processing events may, in turn, be controlled by a regulatory hierarchy. Chromosome sequencing has revealed several other phosphatase–prepeptide gene pairs in B. subtilis, suggesting that the use of this mechanism may be widespread in signal transduction.
Resumo:
High-resolution video microscopy, image analysis, and computer simulation were used to study the role of the Spitzenkörper (Spk) in apical branching of ramosa-1, a temperature-sensitive mutant of Aspergillus niger. A shift to the restrictive temperature led to a cytoplasmic contraction that destabilized the Spk, causing its disappearance. After a short transition period, new Spk appeared where the two incipient apical branches emerged. Changes in cell shape, growth rate, and Spk position were recorded and transferred to the fungus simulator program to test the hypothesis that the Spk functions as a vesicle supply center (VSC). The simulation faithfully duplicated the elongation of the main hypha and the two apical branches. Elongating hyphae exhibited the growth pattern described by the hyphoid equation. During the transition phase, when no Spk was visible, the growth pattern was nonhyphoid, with consecutive periods of isometric and asymmetric expansion; the apex became enlarged and blunt before the apical branches emerged. Video microscopy images suggested that the branch Spk were formed anew by gradual condensation of vesicle clouds. Simulation exercises where the VSC was split into two new VSCs failed to produce realistic shapes, thus supporting the notion that the branch Spk did not originate by division of the original Spk. The best computer simulation of apical branching morphogenesis included simulations of the ontogeny of branch Spk via condensation of vesicle clouds. This study supports the hypothesis that the Spk plays a major role in hyphal morphogenesis by operating as a VSC—i.e., by regulating the traffic of wall-building vesicles in the manner predicted by the hyphoid model.
Resumo:
The spectrum of mutations induced by the naturally occurring DNA adduct pyrimido[1,2-α]purin-10(3H)-one (M1G) was determined by site-specific approaches using M13 vectors replicated in Escherichia coli. M1G was placed at position 6256 in the (−)-strand of M13MB102 by ligating the oligodeoxynucleotide 5′-GGT(M1G)TCCG-3′ into a gapped-duplex derivative of the vector. Unmodified and M1G-modified genomes containing either a cytosine or thymine at position 6256 of the (+)-strand were transformed into repair-proficient and repair-deficient E. coli strains, and base pair substitutions were quantitated by hybridization analysis. Modified genomes containing a cytosine opposite M1G resulted in roughly equal numbers of M1G→A and M1G→T mutations with few M1G→C mutations. The total mutation frequency was ≈1%, which represents a 500-fold increase in mutations compared with unmodified M13MB102. Transformation of modified genomes containing a thymine opposite M1G allowed an estimate to be made of the ability of M1G to block replication. The (−)-strand was replicated >80% of the time in the unadducted genome but only 20% of the time when M1G was present. Correction of the mutation frequency for the strand bias of replication indicated that the actual frequency of mutations induced by M1G was 18%. Experiments using E. coli with different genetic backgrounds indicated that the SOS response enhances the mutagenicity of M1G and that M1G is a substrate for repair by the nucleotide excision repair complex. These studies indicate that M1G, which is present endogenously in DNA of healthy human beings, is a strong block to replication and an efficient premutagenic lesion.
Resumo:
We have investigated physical distances and directions of transposition of the maize transposable element Ac in Arabidopsis thaliana. We prepared a transferred DNA (T-DNA) construct that carried a non-autonomous derivative of Ac with a site for cleavage by endonuclease I-SceI (designated dAc-I-RS element). Another cleavage site was also introduced into the T-DNA region outside dAc-I-RS. Three transgenic Arabidopsis plants were generated, each of which had a single copy of the T-DNA at a different chromosomal location. These transgenic plants were crossed with the Arabidopsis that carried the gene for Ac transposase and progeny in which dAc-I-RS had been transposed were isolated. After digestion of the genomic DNA of these progeny with endonuclease I-SceI, sizes of segment of DNA were determined by pulse-field gel electrophoresis. We also performed linkage analysis for the transposed elements and sites of mutations near the elements. Our results showed that 50% of all transposition events had occurred within 1,700 kb on the same chromosome, with 35% within 200 kb, and that the elements transposed in both directions on the chromosome with roughly equal probability. The data thus indicate that the Ac–Ds system is most useful for tagging of genes that are present within 200 kb of the chromosomal site of Ac in Arabidopsis. In addition, determination of the precise localization of the transposed dAc-I-RS element should definitely assist in map-based cloning of genes around insertion sites.
Resumo:
The transporter associated with antigen processing (TAP) is essential for the transport of antigenic peptides across the membrane of the endoplasmic reticulum. In addition, TAP interacts with major histocompatibility complex class I heavy chain (HC)/β2-microglobulin (β2-m) dimers. We have cloned a cDNA encoding a TAP1/2-associated protein (TAP-A) corresponding in size and biochemical properties to tapasin, which was recently suggested to be involved in class I–TAP interaction (Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. & Cresswell, P. (1996) Immunity 5, 103–114). The cDNA encodes a 448-residue-long ORF, including a signal peptide. The protein is predicted to be a type I membrane glycoprotein with a cytoplasmic tail containing a double-lysine motif (-KKKAE-COOH) known to maintain membrane proteins in the endoplasmic reticulum. Immunoprecipitation with anti-TAP1 or anti-TAP-A antisera demonstrated a consistent and stoichiometric association of TAP-A with TAP1/2. Class I HC and β2-m also were coprecipitated with these antisera, indicating the presence of a pentameric complex. In pulse–chase experiments, class I HC/β2-m rapidly dissociated from TAP1/2-TAP-A. We propose that TAP is a trimeric complex consisting of TAP1, TAP2, and TAP-A that interacts transiently with class I HC/β2-m. In peptide-binding assays using cross-linkable peptides and intact microsomes, TAP-A bound peptides only in the presence of ATP whereas binding of peptides to TAP1/2 was ATP-independent. This suggests a direct role of TAP-A in peptide loading onto class I HC/β2-m dimer.