5 resultados para XIST
em National Center for Biotechnology Information - NCBI
Resumo:
The onset of X inactivation coincides with accumulation of Xist RNA along the future inactive X chromosome. A recent hypothesis proposed that accumulation is initiated by a promoter switch within Xist. In this hypothesis, an upstream promoter (P0) produces an unstable transcript, while the known downstream promoter (P1) produces a stable RNA. To test this hypothesis, we examined expression and half-life of Xist RNA produced from an Xist transgene lacking P0 but retaining P1. We confirm the previous finding that P0 is dispensable for Xist expression in undifferentiated cells and that P1 can be used in both undifferentiated and differentiated cells. Herein, we show that Xist RNA initiated at P1 is unstable and does not accumulate. Further analysis indicates that the transcriptional boundary at P0 does not represent the 5′ end of a distinct Xist isoform. Instead, P0 is an artifact of cross-amplification caused by a pseudogene of the highly expressed ribosomal protein S12 gene Rps12. Using strand-specific techniques, we find that transcription upstream of P1 originates from the DNA strand opposite Xist and represents the 3′ end of the antisense Tsix RNA. Thus, these data do not support the existence of a P0 promoter and suggest that mechanisms other than switching of functionally distinct promoters control the up-regulation of Xist.
Resumo:
The mouse Xist gene is expressed exclusively from the inactive X chromosome and may be implicated in initiating X inactivation. To better understand the mechanisms underlying the control of Xist expression, we investigated the upstream regulatory region of the mouse Xist promoter. A 1.2-kb upstream region of the Xist gene was sequenced and promoter activity was studied by chloramphenicol acetyltransferase (CAT) assays after transfection in murine XX and XY cell lines. The region analyzed (-1157 to +917 showed no in vitro sex-specific promoter activity. However, a minimal constitutional promoter was assigned to a region from -81 to +1, and a cis element from -41 to -15 regulates promoter activity. We showed that a nuclear factor binds to an element located at -30 to -25 (TTAAAG). A second sequence at -41 to -15 does not act as an enhancer and is unable to confer transcriptional activity to the Xist gene on its own. A third region from -82 to -41 is needed for correct expression. Deletion of the segment -441 to -231 is associated with an increase in CAT activity and may represent a silencer element.
Resumo:
During early mammalian embryogenesis, one of the two X chromosomes in somatic cells of the female becomes inactivated through a process that is thought to depend on a unique initiator region, the X-chromosome inactivation center (Xic). The recently characterized Xist sequence (X-inactive-specific transcript) is thought to be a possible candidate for Xic. In mice a further genetic element, the X chromosome-controlling element (Xce), is also known to influence the choice of which of the two X chromosomes is inactivated. We report that a region of the mouse X chromosome lying 15 kb distal to Xist contains several sites that show hypermethylation specifically associated with the active X chromosome. Analysis of this region in various Xce strains has revealed a correlation between the strength of the Xce allele carried and the methylation status of this region. We propose that such a region could be involved in the initial stages of the inactivation process and in particular in the choice of which of the two X chromosomes present in a female cell will be inactivated.
Resumo:
Dosage compensation in mammals occurs by X inactivation, a silencing mechanism regulated in cis by the X inactivation center (Xic). In response to developmental cues, the Xic orchestrates events of X inactivation, including chromosome counting and choice, initiation, spread, and establishment of silencing. It remains unclear what elements make up the Xic. We previously showed that the Xic is contained within a 450-kb sequence that includes Xist, an RNA-encoding gene required for X inactivation. To characterize the Xic further, we performed deletional analysis across the 450-kb region by yeast-artificial-chromosome fragmentation and phage P1 cloning. We tested Xic deletions for cis inactivation potential by using a transgene (Tg)-based approach and found that an 80-kb subregion also enacted somatic X inactivation on autosomes. Xist RNA coated the autosome but skipped the Xic Tg, raising the possibility that X chromosome domains escape inactivation by excluding Xist RNA binding. The autosomes became late-replicating and hypoacetylated on histone H4. A deletion of the Xist 5′ sequence resulted in the loss of somatic X inactivation without abolishing Xist expression in undifferentiated cells. Thus, Xist expression in undifferentiated cells can be separated genetically from somatic silencing. Analysis of multiple Xic constructs and insertion sites indicated that long-range Xic effects can be generalized to different autosomes, thereby supporting the feasibility of a Tg-based approach for studying X inactivation.
Resumo:
Transcriptional inactivation of one X chromosome in mammalian female somatic cells leads to condensation of the inactive X chromosome into the heterochromatic sex chromatin, or Barr body. Little is known about the molecular composition and structure of the Barr body or the mechanisms leading to its formation in female nuclei. Because human sera from patients with autoimmune diseases often contain antibodies against a variety of cellular components, we reasoned that some autoimmune sera may contain antibodies against proteins associated with the Barr body. Therefore, we screened autoimmune sera by immunofluorescence of human fibroblasts and identified one serum that immunostained a distinct nuclear structure with a size and nuclear localization consistent with the Barr body. The number of these structures was consistent with the number of Barr bodies expected in diploid female fibroblasts containing two to five X chromosomes. Immunostaining with the serum followed by fluorescence in situ hybridization with a probe against XIST RNA demonstrated that the major fluorescent signal from the autoantibody colocalized with XIST RNA. Further analysis of the serum showed that it stains human metaphase chromosomes and a nuclear structure consistent with the inactive X in female mouse fibroblasts. However, it does not exhibit localization to a Barr body-like structure in female mouse embryonic stem cells or in cells from female mouse E7.5 embryos. The lack of staining of the inactive X in cells from female E7.5 embryos suggests the antigen(s) may be involved in X inactivation at a stage subsequent to initiation of X inactivation. This demonstration of an autoantibody recognizing an antigen(s) associated with the Barr body presents a strategy for identifying molecular components of the Barr body and examining the molecular basis of X inactivation.