3 resultados para X-1 Jacobi polynomials

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The (X;1)(p11;q21) translocation is a recurrent chromosomal abnormality in a subset of human papillary renal cell carcinomas, and is sometimes the sole cytogenetic abnormality present. Via positional cloning, we were able to identify the genes involved. The translocation results in a fusion of the transcription factor TFE3 gene on the X chromosome to a novel gene, designated PRCC, on chromosome 1. Through this fusion, reciprocal translocation products are formed, which are both expressed in papillary renal cell carcinomas. PRCC is ubiquitously expressed in normal adult and fetal tissues and encodes a putative protein of 491 aa with a relatively high content of prolines. No relevant homologies with known sequences at either the DNA or the protein level were found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Orally administered antigens induce a state of immunologic hyporesponsiveness termed oral tolerance. Different mechanisms are involved in mediating oral tolerance depending on the dose fed. Low doses of antigen generate cytokine-secreting regulatory cells, whereas high doses induce anergy or deletion. We used mice transgenic for a T-cell receptor (TCR) derived from an encephalitogenic T-cell clone specific for the acetylated N-terminal peptide of myelin basic protein (MBP) Ac-1-11 plus I-Au to test whether a regulatory T cell could be generated from the same precursor cell as that of an encephalitogenic Th1 cell and whether the induction was dose dependent. The MBP TCR transgenic mice primarily have T cells of a precursor phenotype that produce interleukin 2 (IL-2) with little interferon gamma (IFN-gamma), IL-4, or transforming growth factor beta (TGF-beta). We fed transgenic animals a low-dose (1 mg x 5) or high-dose (25 mg x 1) regimen of mouse MBP and without further immunization spleen cells were tested for cytokine production. Low-dose feeding induced prominent secretion of IL-4, IL-10, and TGF-beta, whereas minimal secretion of these cytokines was observed with high-dose feeding. Little or no change was seen in proliferation or IL-2/IFN-gamma secretion in fed animals irrespective of the dose. To demonstrate in vivo functional activity of the cytokine-secreting cells generated by oral antigen, spleen cells from low-dose-fed animals were adoptively transferred into naive (PLJ x SJL)F1 mice that were then immunized for the development of experimental autoimmune encephalomyelitis (EAE). Marked suppression of EAE was observed when T cells were transferred from MBP-fed transgenic animals but not from animals that were not fed. In contrast to oral tolerization, s.c. immunization of transgenic animals with MBP in complete Freund's adjuvant induced IFN-gamma-secreting Th1 cells in vitro and experimental encephalomyelitis in vivo. Despite the large number of cells reactive to MBP in the transgenic animals, EAE was also suppressed by low-dose feeding of MBP prior to immunization. These results demonstrate that MBP-specific T cells can differentiate in vivo into encephalitogenic or regulatory T cells depending upon the context by which they are exposed to antigen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neural basis for perceptual grouping operations in the human visual system, including the processes which generate illusory contours, is fundamental to understanding human vision. We have employed functional magnetic resonance imaging to investigate these processes noninvasively. Images were acquired on a GE Signa 1.5T scanner equipped for echo planar imaging with an in-plane resolution of 1.5 x 1.5 mm and slice thicknesses of 3.0 or 5.0 mm. Visual stimuli included nonaligned inducers (pacmen) that created no perceptual contours, similar inducers at the corners of a Kanizsa square that created illusory contours, and a real square formed by continuous contours. Multiple contiguous axial slices were acquired during baseline, visual stimulation, and poststimulation periods. Activated regions were identified by a multistage statistical analysis of the activation for each volume element sampled and were compared across conditions. Specific brain regions were activated in extrastriate cortex when the illusory contours were perceived but not during conditions when the illusory contours were absent. These unique regions were found primarily in the right hemisphere for all four subjects and demonstrate that specific brain regions are activated during the kind of perceptual grouping operations involved in illusory contour perception.