84 resultados para X RECEPTOR ACTIVATORS
em National Center for Biotechnology Information - NCBI
Resumo:
Nuclear hormone receptors comprise a characteristic family of transcription factors found in vertebrates, insects and nematodes. Here we show by cDNA and gene cloning that a Cnidarian, Tripedalia cystophora, possesses a retinoid receptor (jRXR) with remarkable homology to vertebrate retinoic acid X receptors (RXRs). Like vertebrate RXRs, jRXR binds 9-cis retinoic acid (Kd = 4 × 10−10 M) and binds to the DNA sequence, PuGGTCA as a monomer in vitro. jRXR also heterodimerizes with Xenopus TR beta on a thyroid responsive element of a direct repeat separated by 4 bp. A jRXR binding half-site capable of interacting with (His6)jRXR fusion protein was identified in the promoters of three T. cystophora crystallin genes that are expressed highly in the eye lens of this jellyfish. Because crystallin gene expression is regulated by retionoid signaling in vertebrates, the jellyfish crystallin genes are candidate in vivo targets for jRXR. Finally, an antibody prepared against (His6)jRXR showed that full-length jRXR is expressed at all developmental stages of T. cystophora except the ephydra, where a smaller form replaces is. These data show that Cnidaria, a diploblastic phylum ancestral to the triploblastic invertebrate and subsequent vertebrate lineages, already have an RXR suggesting that RXR is an early component of the regulatory mechanisms of metazoa.
Resumo:
Dopamine is a neuromodulator involved in the control of key physiological functions. Dopamine-dependent signal transduction is activated through the interaction with membrane receptors of the seven-transmembrane domain G protein-coupled family. Among them, dopamine D2 receptor is highly expressed in the striatum and the pituitary gland as well as by mesencephalic dopaminergic neurons. Lack of D2 receptors in mice leads to a locomotor parkinsonian-like phenotype and to pituitary tumors. The D2 receptor promoter has characteristics of a housekeeping gene. However, the restricted expression of this gene to particular neurons and cells points to a strict regulation of its expression by cell-specific transcription factors. We demonstrate here that the D2 receptor promoter contains a functional retinoic acid response element. Furthermore, analysis of retinoic acid receptor-null mice supports our finding and shows that in these animals D2 receptor expression is reduced. This finding assigns to retinoids an important role in the control of gene expression in the central nervous system.
Resumo:
All-trans and 9-cis retinoic acids (RA) signals are transduced by retinoic acid receptor/retinoid X receptor (RAR/RXR) heterodimers that act as functional units controlling the transcription of RA-responsive genes. With the aim of elucidating the underlying molecular mechanisms, we have developed an in vitro transcription system using a chromatin template made up of a minimal promoter and a direct repeat with 5-spacing-based RA response element. RARα and RXRα were expressed in and purified from baculovirus-infected Sf9 cells, and transcription was carried out by using naked DNA or chromatin templates. Transcription from naked templates was not affected by the presence of RA and/or RAR/RXR heterodimers. In contrast, very little transcription occurred from chromatin templates in the absence of RA or RAR/RXR heterodimers whereas their addition resulted in a dosage-dependent stimulation of transcription that never exceeded that occurring on naked DNA templates. Most importantly, the addition of synthetic agonistic or antagonistic retinoids to the chromatin transcription system mimicked their stimulatory or inhibitory action in vivo, and activation by a RXR-specific retinoid was subordinated to the binding of an agonist ligand to the RAR partner. Moreover, the addition of the p300 coactivator generated a synergistic enhancement of transcription. Thus, the dissection of this transcription system ultimately should lead to the elucidation of the molecular mechanisms by which RAR/RXR heterodimers control transcription in a ligand-dependent manner.
Resumo:
Nuclear receptors constitute a large family of ligand-modulated transcription factors that mediate cellular responses to small lipophilic molecules, including steroids, retinoids, fatty acids, and exogenous ligands. Orphan nuclear receptors with no known endogenous ligands have been discovered to regulate drug-mediated induction of cytochromes P450 (CYP), the major drug-metabolizing enzymes. Here, we report the cloning of an orphan nuclear receptor from chicken, termed chicken xenobiotic receptor (CXR), that is closely related to two mammalian xenobiotic-activated receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). Expression of CXR is restricted to tissues where drug induction of CYPs predominantly occurs, namely liver, kidney, small intestine, and colon. Furthermore, CXR binds to a previously identified phenobarbital-responsive enhancer unit (PBRU) in the 5′-flanking region of the chicken CYP2H1 gene. A variety of drugs, steroids, and chemicals activate CXR in CV-1 monkey cell transactivation assays. The same agents induce PBRU-dependent reporter gene expression and CYP2H1 transcription in a chicken hepatoma cell line. These results provide convincing evidence for a major role of CXR in the regulation of CYP2H1 and add a member to the family of xenobiotic-activated orphan nuclear receptors.
Resumo:
A common feature of many metabolic pathways is their control by retinoid X receptor (RXR) heterodimers. Dysregulation of such metabolic pathways can lead to the development of atherosclerosis, a disease influenced by both systemic and local factors. Here we analyzed the effects of activation of RXR and some of its heterodimers in apolipoprotein E −/− mice, a well established animal model of atherosclerosis. An RXR agonist drastically reduced the development of atherosclerosis. In addition, a ligand for the peroxisome proliferator-activated receptor (PPAR)γ and a dual agonist of both PPARα and PPARγ had moderate inhibitory effects. Both RXR and liver X receptor (LXR) agonists induced ATP-binding cassette protein 1 (ABC-1) expression and stimulated ABC-1-mediated cholesterol efflux from macrophages from wild-type, but not from LXRα and β double −/−, mice. Hence, activation of ABC-1-mediated cholesterol efflux by the RXR/LXR heterodimer might contribute to the beneficial effects of rexinoids on atherosclerosis and warrant further evaluation of RXR/LXR agonists in prevention and treatment of atherosclerosis.
Resumo:
The Drosophila homolog of the retinoid X receptor, ultraspiracle (USP), heterodimerizes with the ecdysone receptor (EcR) to form a functional complex that mediates the effects of the steroid molting hormone ecdysone by activating and repressing expression of ecdysone response genes. As with other retinoid X receptor heterodimers, EcR/USP affects gene transcription in a ligand-modulated manner. We used in vivo, cell culture, and biochemical approaches to analyze the functions of two usp alleles, usp3 and usp4, which encode stable proteins with defective DNA-binding domains. We observed that USP is able to activate as well as repress the Z1 isoform of the ecdysone-responsive broad complex (BrC-Z1). Activation of BrC-Z1 as well as EcR, itself an ecdysone response gene, can be mediated by both the USP3 and USP4 mutant proteins. USP3 and USP4 also activate an ecdysone-responsive element, hsp27EcRE, in cultured cells. These results differ from the protein null allele, usp2, which is unable to mediate activation [Schubiger, M. & Truman, J. W. (2000) Development 127, 1151–1159]. BrC-Z1 repression is compromised in all three usp alleles, suggesting that repression involves the association of USP with DNA. Our results distinguish two mechanisms by which USP modulates the properties of EcR: one that involves the USP DNA-binding domain and one that can be achieved solely through the ligand-binding domain. These newly revealed properties of USP might implicate similar properties for retinoid X receptor.
Resumo:
Retinoid X receptors (RXRs) are involved in a number of signaling pathways as heterodimeric partners of numerous nuclear receptors. Hepatocytes express high levels of the RXRα isotype, as well as several of its putative heterodimeric partners. Germ-line disruption (knockout) of RXRα has been shown to be lethal in utero, thus precluding analysis of its function at later life stages. Hepatocyte-specific disruption of RXRα during liver organogenesis has recently revealed that the presence of hepatocytes is not mandatory for the mouse, at least under normal mouse facility conditions, even though a number of metabolic events are impaired [Wan, Y.-J., et al. (2000) Mol. Cell. Biol. 20, 4436–4444]. However, it is unknown whether RXRα plays a role in the control of hepatocyte proliferation and lifespan. Here, we report a detailed analysis of the liver of mice in which RXRα was selectively ablated in adult hepatocytes by using the tamoxifen-inducible chimeric Cre recombinase system. Our results show that the lifespan of adult hepatocytes lacking RXRα is shorter than that of their wild-type counterparts, whereas proliferative hepatocytes of regenerating liver exhibit an even shorter lifespan. These lifespan shortenings are accompanied by increased polyploidy and multinuclearity. We conclude that RXRα plays important cell-autonomous function(s) in the mechanism(s) involved in the lifespan of hepatocytes and liver regeneration.
Resumo:
Retinoids exert pleiotropic effects on the development of vertebrates through the action of retinoic acid receptors (RAR) and retinoid X receptors (RXR). We have investigated the effect of synthetic retinoids selective for RXR and RAR on the development of Xenopus and zebrafish embryos. In Xenopus, both ligands selective for RAR and RXR caused striking malformations along the anterior-posterior axis, whereas in zebrafish only ligands specific for RAR caused embryonic malformations. In Xenopus, RAR- and RXR-selective ligands regulated the expression of the Xlim-1, gsc, and HoxA1 genes similarly as all-trans-retinoic acid. Nevertheless, RXR-selective ligands activated only an RXR responsive reporter but not an RAR responsive reporter introduced by microinjection into the Xenopus embryo, consistent with our failure to detect conversion of an RXR-selective ligand to different derivatives in the embryo. These results suggest that Xenopus embryos possess a unique response pathway in which liganded RXR can control gene expression. Our observations further illustrate the divergence in retinoid responsiveness between different vertebrate species.
Resumo:
Protein-protein interactions allow the retinoid X receptor (RXR) to bind to cognate DNA as a homo- or a heterodimer and to participate in mediating the effects of a variety of hormones on gene transcription. Here we report a systematic study of the oligomeric state of RXR in the absence of a DNA template. We have used electrophoresis under nondenaturing conditions and chemical crosslinking to show that in solution, RXR alpha forms homodimers as well as homotetramers. The dissociation constants governing dimer and tetramer formation were estimated by fluorescence anisotropy studies. The results indicate that RXR tetramers are formed with a high affinity and that at protein concentrations higher than about 70 nM, tetramers will constitute the predominant species. Tetramer formation may provide an additional level of the regulation of gene transcription mediated by RXRs.
Resumo:
The retinoid X receptor (RXR) participates in a wide array of hormonal signaling pathways, either as a homodimer or as a heterodimer, with other members of the steroid and thyroid hormone receptor superfamily. In this report the ligand-dependent transactivation function of RXR has been characterized, and the ability of RXR to interact with components of the basal transcription machinery has been examined. In vivo and in vitro experiments indicate the RXR ligand-binding domain makes a direct, specific, and ligand-dependent contact with a highly conserved region of the TATA-binding protein. The ability of mutations that reduce ligand-dependent transcription by RXR to disrupt the RXR-TATA-binding protein interaction in vivo and in vitro suggests that RXR makes direct contact with the basal transcription machinery to achieve activation.
Resumo:
We have recently characterized a cardiac model of ventricular chamber defects in retinoid X receptor alpha (RXR alpha) homozygous mutant (-/-) gene-targeted mice. These mice display generalized edema, ventricular chamber hypoplasia, and muscular septal defects, and they die at embryonic day 15. To substantiate our hypothesis that the embryos are dying of cardiac pump failure, we have used digital bright-field and fluorescent video microscopy and in vivo microinjection of fluorescein-labeled albumin to analyze cardiac function. The affected embryos showed depressed ventricular function (average left ventricular area ejection fraction, 14%), ventricular septal defects, and various degrees of atrioventricular block not seen in the RXR alpha wild-type (+/+) and heterozygous (+/-) littermates (average left ventricular area ejection fraction, 50%). The molecular mechanisms involved in these ventricular defects were studied by evaluating expression of cardiac-specific genes known to be developmentally regulated. By in situ hybridization, aberrant, persistent expression of the atrial isoform of myosin light chain 2 was identified in the ventricles. We hypothesize that retinoic acid provides a critical signal mediated through the RXR alpha pathway that is required to allow progression of development of the ventricular region of the heart from its early atrial-like form to the thick-walled adult ventricle. The conduction system disturbances found in the RXR alpha -/- embryos may reflect a requirement of the developing conduction system for the RXR alpha signaling pathway, or it may be secondary to the failure of septal development.
Resumo:
Histone acetylation is thought to have a role in transcription. To gain insight into the role of histone acetylation in retinoid-dependent transcription, we studied the effects of trichostatin A (TSA), a specific inhibitor of histone deacetylase, on P19 embryonal carcinoma cells. We show that coaddition of TSA and retinoic acid (RA) markedly enhances neuronal differentiation in these cells, although TSA alone does not induce differentiation but causes extensive apoptosis. Consistent with the cooperative effect of TSA and RA, coaddition of the two agents synergistically enhanced transcription from stably integrated RA-responsive promoters. The transcriptional synergy by TSA and RA required the RA-responsive element and a functional retinoid X receptor (RXR)/retinoic acid receptor (RAR) heterodimer, both obligatory for RA-dependent transcription. Furthermore, TSA led to promoter activation by an RXR-selective ligand that was otherwise inactive in transcription. In addition, TSA enhanced transcription from a minimum basal promoter, independently of the RA-responsive element. Finally, we show that TSA alone or in combination with RA increases in vivo endonuclease sensitivity within the RA-responsive promoter, suggesting that TSA treatment might alter a local chromatin environment to enhance RXR/RAR heterodimer action. Thus, these results indicate that histone acetylation influences activity of the heterodimer, which is in line with the observed interaction between the RXR/RAR heterodimer and a histone acetylase presented elsewhere.
Resumo:
In an effort to identify nuclear receptors important in retinal disease, we screened a retina cDNA library for nuclear receptors. Here we describe the identification of a retina-specific nuclear receptor (RNR) from both human and mouse. Human RNR is a splice variant of the recently published photoreceptor cell-specific nuclear receptor [Kobayashi, M., Takezawa, S., Hara, K., Yu, R. T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K. & Umesono, K. (1999) Proc. Natl. Acad. Sci. USA 96, 4814–4819] whereas the mouse RNR is a mouse ortholog. Northern blot and reverse transcription–PCR analyses of human mRNA samples demonstrate that RNR is expressed exclusively in the retina, with transcripts of ≈7.5 kb, ≈3.0 kb, and ≈2.3 kb by Northern blot analysis. In situ hybridization with multiple probes on both primate and mouse eye sections demonstrates that RNR is expressed in the retinal pigment epithelium and in Müller glial cells. By using the Gal4 chimeric receptor/reporter cotransfection system, the ligand binding domain of RNR was found to repress transcriptional activity in the absence of exogenous ligand. Gel mobility shift assays revealed that RNR can interact with the promoter of the cellular retinaldehyde binding protein gene in the presence of retinoic acid receptor (RAR) and/or retinoid X receptor (RXR). These data raise the possibility that RNR acts to regulate the visual cycle through its interaction with cellular retinaldehyde binding protein and therefore may be a target for retinal diseases such as retinitis pigmentosa and age-related macular degeneration.
Resumo:
Ultraspiracle (USP) is the invertebrate homologue of the mammalian retinoid X receptor (RXR). RXR plays a uniquely important role in differentiation, development, and homeostasis through its ability to serve as a heterodimeric partner to many other nuclear receptors. RXR is able to influence the activity of its partner receptors through the action of the ligand 9-cis retinoic acid. In contrast to RXR, USP has no known high-affinity ligand and is thought to be a silent component in the heterodimeric complex with partner receptors such as the ecdysone receptor. Here we report the 2.4-Å crystal structure of the USP ligand-binding domain. The structure shows that a conserved sequence motif found in dipteran and lepidopteran USPs, but not in mammalian RXRs, serves to lock USP in an inactive conformation. It also shows that USP has a large hydrophobic cavity, implying that there is almost certainly a natural ligand for USP. This cavity is larger than that seen previously for most other nuclear receptors. Intriguingly, this cavity has partial occupancy by a bound lipid, which is likely to resemble the natural ligand for USP.
Resumo:
The pregnane X receptor (PXR) is the molecular target for catatoxic steroids such as pregnenolone 16α-carbonitrile (PCN), which induce cytochrome P450 3A (CYP3A) expression and protect the body from harmful chemicals. In this study, we demonstrate that PXR is activated by the toxic bile acid lithocholic acid (LCA) and its 3-keto metabolite. Furthermore, we show that PXR regulates the expression of genes involved in the biosynthesis, transport, and metabolism of bile acids including cholesterol 7α-hydroxylase (Cyp7a1) and the Na+-independent organic anion transporter 2 (Oatp2). Finally, we demonstrate that activation of PXR protects against severe liver damage induced by LCA. Based on these data, we propose that PXR serves as a physiological sensor of LCA, and coordinately regulates gene expression to reduce the concentrations of this toxic bile acid. These findings suggest that PXR agonists may prove useful in the treatment of human cholestatic liver disease.