5 resultados para Wide Band Gap Semi-conductor

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dichotomy between two groups of workers on neuroelectrical activity is retarding progress. To study the interrelations between neuronal unit spike activity and compound field potentials of cell populations is both unfashionable and technically challenging. Neither of the mutual disparagements is justified: that spikes are to higher functions as the alphabet is to Shakespeare and that slow field potentials are irrelevant epiphenomena. Spikes are not the basis of the neural code but of multiple codes that coexist with nonspike codes. Field potentials are mainly information-rich signs of underlying processes, but sometimes they are also signals for neighboring cells, that is, they exert influence. This paper concerns opportunities for new research with many channels of wide-band (spike and slow wave) recording. A wealth of structure in time and three-dimensional space is different at each scale—micro-, meso-, and macroactivity. The depth of our ignorance is emphasized to underline the opportunities for uncovering new principles. We cannot currently estimate the relative importance of spikes and synaptic communication vs. extrasynaptic graded signals. In spite of a preponderance of literature on the former, we must consider the latter as probably important. We are in a primitive stage of looking at the time series of wide-band voltages in the compound, local field, potentials and of choosing descriptors that discriminate appropriately among brain loci, states (functions), stages (ontogeny, senescence), and taxa (evolution). This is not surprising, since the brains in higher species are surely the most complex systems known. They must be the greatest reservoir of new discoveries in nature. The complexity should not deter us, but a dose of humility can stimulate the flow of imaginative juices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the level of the cochlear nucleus (CN), the auditory pathway divides into several parallel circuits, each of which provides a different representation of the acoustic signal. Here, the representation of the power spectrum of an acoustic signal is analyzed for two CN principal cells—chopper neurons of the ventral CN and type IV neurons of the dorsal CN. The analysis is based on a weighting function model that relates the discharge rate of a neuron to first- and second-order transformations of the power spectrum. In chopper neurons, the transformation of spectral level into rate is a linear (i.e., first-order) or nearly linear function. This transformation is a predominantly excitatory process involving multiple frequency components, centered in a narrow frequency range about best frequency, that usually are processed independently of each other. In contrast, type IV neurons encode spectral information linearly only near threshold. At higher stimulus levels, these neurons are strongly inhibited by spectral notches, a behavior that cannot be explained by level transformations of first- or second-order. Type IV weighting functions reveal complex excitatory and inhibitory interactions that involve frequency components spanning a wider range than that seen in choppers. These findings suggest that chopper and type IV neurons form parallel pathways of spectral information transmission that are governed by two different mechanisms. Although choppers use a predominantly linear mechanism to transmit tonotopic representations of spectra, type IV neurons use highly nonlinear processes to signal the presence of wide-band spectral features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Materials with high electrical conductivity and optical transparency are needed for future flat panel display, solar energy, and other opto-electronic technologies. InxCd1-xO films having a simple cubic microstructure have been grown on amorphous glass substrates by a straightforward chemical vapor deposition process. The x = 0.05 film conductivity of 17,000 S/cm, carrier mobility of 70 cm2/Vs, and visible region optical transparency window considerably exceed the corresponding parameters for commercial indium-tin oxide. Ab initio electronic structure calculations reveal small conduction electron effective masses, a dramatic shift of the CdO band gap with doping, and a conduction band hybridization gap caused by extensive Cd 5s + In 5s mixing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Perforant path long-term potentiation (LTP) in intact mouse hippocampal dentate gyrus increased the neuron-specific, growth-associated protein GAP-43 mRNA in hilar cells 3 days after tetanus, but surprisingly not in granule cells, the perforant path target. This increase was positively correlated with level of enhancement and restricted to central hilar cells on the side of stimulation. Blockade of LTP by puffing dl-aminophosphonovalerate (APV), an N-methyl-d-aspartate (NMDA) receptor blocker into the molecular layer, eliminated LTP-induced GAP-43 mRNA elevation in hilar cells. To determine whether the mRNA elevation was mediated by transcription, LTP was studied in transgenic mice bearing a GAP-43 promoter-lacZ reporter gene. Promoter activity as indexed by Transgene expression (PATE) increased as indicated by blue staining of the lacZ gene product, β-galactosidase. Potentiation induced a blue band bilaterally in the inner molecular layer of the dentate gyrus along the entire septotemporal axis. Because mossy cells are the only neurons in the central hilar zone that project to the inner molecular layer bilaterally along the entire septotemporal axis and LTP-induced activation of PATE in this zone was confined to the side of stimulation, we concluded that mossy cells were unilaterally activated, increasing synthesis of β-galactosidase, which was transported bilaterally. Neither granule cells nor pyramidal cells demonstrated increased PATE or increased GAP-43 mRNA levels. These results and recent evidence indicating the necessity of hilar neurons for LTP point to previously unheralded mossy cells as potentially critical for perforant path LTP and the GAP-43 in these cells as important for LTP persistence lasting days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Band 3 HT (Pro-868-->Leu) is a mutant anion exchange protein which has several phenotypic characteristics, including a 2- to 3-fold larger Vmax, and reduced covalent binding of the anion transport inhibitor 4,4'-diisothiocyanodihydrostilbene-2,2'-disulfonate (H2DIDS). We have used fluorescence kinetic methods to study inhibitor binding to band 3 to determine if the point mutation in band 3 HT produces localized or wide-spread conformational changes within the membrane-bound domain of this transporter. Our results show that covalent binding of H2DIDS by band 3 HT is slower by a factor of 10 to 20 compared with the wild-type protein. In contrast, no such difference in the kinetics was observed for covalent binding of 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS). In addition, the kinetics of H2DIDS release from band 3 HT was abnormal, while the kinetics of 4,4'-dibenzamidostilbene-2,2'-disulfonate (DBDS) release showed no difference when compared with the wild-type protein. We conclude that substitution of leucine for proline at position 868 does not perturb the structure of "lysine A" in the membrane-bound domain of band 3 but rather produces an apparently localized conformational change in the C-terminal subdomain of the protein which alters H2DIDS affinity. When combined with the observation of an increased Vmax, these results suggest that protein structural changes at position 868 influence a turnover step in the transport cycle.