2 resultados para Wave filters
em National Center for Biotechnology Information - NCBI
Resumo:
Electrical and magnetic brain waves of seven subjects under three experimental conditions were recorded for the purpose of recognizing which one of seven words was processed. The analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse transformation to the time domain. The filters used were optimal predictive filters, selected for each subject and condition. Recognition rates, based on a least-squares criterion, varied widely, but all but one of 24 were significantly different from chance. The two best were above 90%. These results show that brain waves carry substantial information about the word being processed under experimental conditions of conscious awareness.
Resumo:
Electrical and magnetic brain waves of two subjects were recorded for the purpose of recognizing which one of 12 sentences or seven words auditorily presented was processed. The analysis consisted of averaging over trials to create prototypes and test samples, to each of which a Fourier transform was applied, followed by filtering and an inverse transformation to the time domain. The filters used were optimal predictive filters, selected for each subject. A still further improvement was obtained by taking differences between recordings of two electrodes to obtain bipolar pairs that then were used for the same analysis. Recognition rates, based on a least-squares criterion, varied, but the best were above 90%. The first words of prototypes of sentences also were cut and pasted to test, at least partially, the invariance of a word’s brain wave in different sentence contexts. The best result was above 80% correct recognition. Test samples made up only of individual trials also were analyzed. The best result was 134 correct of 288 (47%), which is promising, given that the expected recognition number by chance is just 24 (or 8.3%). The work reported in this paper extends our earlier work on brain-wave recognition of words only. The recognition rates reported here further strengthen the case that recordings of electric brain waves of words or sentences, together with extensive mathematical and statistical analysis, can be the basis of new developments in our understanding of brain processing of language.