3 resultados para Water restriction

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 2.15-Å resolution cocrystal structure of EcoRV endonuclease mutant T93A complexed with DNA and Ca2+ ions reveals two divalent metals bound in one of the active sites. One of these metals is ligated through an inner-sphere water molecule to the phosphate group located 3′ to the scissile phosphate. A second inner-sphere water on this metal is positioned approximately in-line for attack on the scissile phosphate. This structure corroborates the observation that the pro-SP phosphoryl oxygen on the adjacent 3′ phosphate cannot be modified without severe loss of catalytic efficiency. The structural equivalence of key groups, conserved in the active sites of EcoRV, EcoRI, PvuII, and BamHI endonucleases, suggests that ligation of a catalytic divalent metal ion to this phosphate may occur in many type II restriction enzymes. Together with previous cocrystal structures, these data allow construction of a detailed model for the pretransition state configuration in EcoRV. This model features three divalent metal ions per active site and invokes assistance in the bond-making step by a conserved lysine, which stabilizes the attacking hydroxide ion nucleophile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The free energy difference between complexes of the restriction nuclease EcoRI with nonspecific DNA and with the enzyme's recognition sequence is linearly dependent on the water chemical potential of the solution, set using several very different solutes, ranging from glycine and glycerol to triethylene glycol and sucrose. This osmotic dependence indicates that the nonspecific complex sequesters some 110 waters more than the specific complex with the recognition sequence. The insensitivity of the difference in number of waters released to the solute identity further indicates that this water is sequestered in a space that is sterically inaccessible to solutes, most likely at the protein-DNA interface of the nonspecific complex. Calculations based on the structure of the specific complex suggest that the apposing DNA and protein surfaces in the nonspecific complex retain approximately a full hydration layer of water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cleavage specificity of the Pvu II and BamHI restriction endonucleases is found to be dramatically reduced at elevated osmotic pressure. Relaxation in specificity of these otherwise highly accurate and specific enzymes, previously termed "star activity," is uniquely correlated with osmotic pressure between 0 and 100 atmospheres. No other colligative solvent property exhibits a uniform correlation with star activity for all of the compounds tested. Application of hydrostatic pressure counteracts the effects of osmotic pressure and restores the natural selectivity of the enzymes for their canonical recognition sequences. These results indicate that water solvation plays an important role in the site-specific recognition of DNA by many restriction enzymes. Osmotic pressure did not induce an analogous effect on the specificity of the EcoRV endonuclease, implying that selective hydration effects do not participate in DNA recognition in this system. Hydrostatic pressure was found to have little effect on the star activity induced by changes in ionic strength, pH, or divalent cation, suggesting that distinct mechanisms may exist for these observed alterations in specificity. Recent evidence has indicated that BamHI and EcoRI share similar structural motifs, while Pvu II and EcoRV belong to a different structural family. Evidently, the use of hydration water to assist in site-specific recognition is a motif neither limited to nor defined by structural families.