4 resultados para WATER STABILITY

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combining Viking pressure and temperature data with Mars Orbital Laser Altimeter topography data, we have computed the fraction of the martian year during which pressure and temperature allow for liquid water to be stable on the martian surface. We find that liquid water would be stable within the Hellas and Argyre basin and over the northern lowlands equatorward of about 40°. The location with the maximum period of stable conditions for liquid water is in the southeastern portion of Utopia Planitia, where 34% of the year liquid water would be stable if it were present. Locations of stability appear to correlate with the distribution of valley networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaporin-1 (AQP1) water channel protein expression is increased by hypertonic stress. The contribution of changes in protein stability to hypertonic induction of AQP1 have not been described. Incubation of BALB/c fibroblasts spontaneously expressing AQP1 with proteasome inhibitors increased AQP1 expression, suggesting basal proteasome-dependent degradation of the protein. Degradation by the proteasome is thought to be triggered by polyubiquitination of a target protein. To determine whether AQP1 is ubiquitinated, immunoprecipitation with anti-AQP1 antibodies was performed, and the resultant samples were probed by protein immunoblot for the presence of ubiquitin. Immunoblots demonstrated ubiquitination of AQP1 under control conditions that increased after treatment with proteasome inhibitors (MG132, lactacystin). Exposure of cells to hypertonic medium for as little as 4 h decreased ubiquitination of AQP1, an effect that persisted through 24 h in hypertonic medium. Using metabolic labeling with [35S]methionine, the half-life of AQP1 protein under isotonic conditions was found to be <4 h. AQP1 protein half-life was markedly increased by exposure of cells to hypertonic medium. These observations provide evidence that aquaporins are a target for ubiquitination and proteasome-dependent degradation. Additionally, these studies demonstrate that reduced protein ubiquitination and increased protein stability lead to increased levels of AQP1 expression during hypertonic stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the occurrence of intracellular glasses in seeds and pollen has been established, physical properties such as rotational correlation times and viscosity have not been studied extensively. Using electron paramagnetic resonance spectroscopy, we examined changes in the molecular mobility of the hydrophilic nitroxide spin probe 3-carboxy-proxyl during melting of intracellular glasses in axes of pea (Pisum sativum L.) seeds and cattail (Typha latifolia L.) pollen. The rotational correlation time of the spin probe in intracellular glasses of both organisms was approximately 10−3 s. Using the distance between the outer extrema of the electron paramagnetic resonance spectrum (2Azz) as a measure of molecular mobility, we found a sharp increase in mobility at a definite temperature during heating. This temperature increased with decreasing water content of the samples. Differential scanning calorimetry data on these samples indicated that this sharp increase corresponded to melting of the glassy matrix. Molecular mobility was found to be inversely correlated with storage stability. With decreasing water content, the molecular mobility reached a minimum, and increased again at very low water content. Minimum mobility and maximum storage stability occurred at a similar water content. This correlation suggests that storage stability might be at least partially controlled by molecular mobility. At low temperatures, when storage longevity cannot be determined on a realistic time scale, 2Azz measurements can provide an estimate of the optimum storage conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The functional role of residue Tyr-19 of Chromatium vinosum HiPIP has been evaluated by site-directed mutagenesis experiments. The stability of the [Fe4S4] cluster prosthetic center is sensitive to side-chain replacements. Polar residues result in significant instability, while nonpolar residues (especially with aromatic side chains) maintain cluster stability. Two-dimensional NMR data of native and mutant HiPIPs are consistent with a model where Tyr-19 serves to preserve the structural rigidity of the polypeptide backbone, thereby maintaining a hydrophobic barrier for exclusion of water from the cluster cavity. Solvent accessibility results in more facile oxidation of the cluster by atmospheric oxygen, with subsequent rapid hydrolysis of the [Fe4S4]3+ core.