6 resultados para Vitamin complex

em National Center for Biotechnology Information - NCBI


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Kidney cortex is a main target for circulating vitamin B12 (cobalamin) in complex with transcobalamin (TC). Ligand blotting of rabbit kidney cortex with rabbit 125I-TC-B12 and human TC-57Co-B12 revealed an exclusive binding to megalin, a 600-kDa endocytic receptor present in renal proximal tubule epithelium and other absorptive epithelia. The binding was Ca2+ dependent and inhibited by receptor-associated protein (RAP). Surface plasmon resonance analysis demonstrated a high-affinity interaction between purified rabbit megalin and rabbit TC-B12 but no measurable affinity of the vitamin complex for the homologous alpha 2-macroglobulin receptor (alpha 2MR)/low density lipoprotein receptor related protein (LRP). 125I-TC-B12 was efficiently endocytosed in a RAP-inhibitable manner in megalin-expressing rat yolk sac carcinoma cells and in vivo microperfused rat proximal tubules. The radioactivity in the tubules localized to the endocytic compartments and a similar apical distribution in the proximal tubules was demonstrated after intravenous injection of 125I-TC-B12. The TC-B12 binding sites in the proximal tubule epithelium colocalized with megalin as shown by ligand binding to cryosections of rat kidney cortex, and the binding was inhibited by anti-megalin polyclonal antibody, EDTA, and RAP. These data show a novel nutritional dimension of megalin as a receptor involved in the cellular uptake of vitamin B12. The expression of megalin in absorptive epithelia in the kidney and other tissues including yolk sac and placenta suggests a role of the receptor in vitamin B12 homeostasis and fetal vitamin B12 supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-dimensional structure of glutamate-1-semialdehyde aminomutase (EC 5.4.3.8), an α2-dimeric enzyme from Synechococcus, has been determined by x-ray crystallography using heavy atom derivative phasing. The structure, refined at 2.4-Å resolution to an R-factor of 18.7% and good stereochemistry, explains many of the enzyme’s unusual specificity and functional properties. The overall fold is that of aspartate aminotransferase and related B6 enzymes, but it also has specific features. The structure of the complex with gabaculine, a substrate analogue, shows unexpectedly that the substrate binding site involves residues from the N-terminal domain of the molecule, notably Arg-32. Glu-406 is suitably positioned to repel α-carboxylic acids, thereby suggesting a basis for the enzyme’s reaction specificity. The subunits show asymmetry in cofactor binding and in the mobilities of the residues 153–181. In the unliganded enzyme, one subunit has the cofactor bound as an aldimine of pyridoxal phosphate with Lys-273 and, in this subunit, residues 153–181 are disordered. In the other subunit in which the cofactor is not covalently bound, residues 153–181 are well defined. Consistent with the crystallographically demonstrated asymmetry, a form of the enzyme in which both subunits have pyridoxal phosphate bound to Lys-273 through a Schiff base showed biphasic reduction by borohydride in solution. Analysis of absorption spectra during reduction provided evidence of communication between the subunits. The crystal structure of the reduced form of the enzyme shows that, despite identical cofactor binding in each monomer, the structural asymmetry at residues 153–181 remains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structure of a novel tetradehydrocorrin, factor IV, isolated from Propionibacterium shermanii has been established by multidimensional NMR spectroscopy. Incorporation of radiolabeled factor IV into cobyrinic acid established the biointermediacy of this cobalt complex, whose structure has implications for the mechanisms of the anaerobic pathway to B12.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The vitamin K-dependent carboxylase modifies and renders active vitamin K-dependent proteins involved in hemostasis, cell growth control, and calcium homeostasis. Using a novel mechanism, the carboxylase transduces the free energy of vitamin K hydroquinone (KH2) oxygenation to convert glutamate into a carbanion intermediate, which subsequently attacks CO2, generating the γ-carboxylated glutamate product. How the carboxylase effects this conversion is poorly understood because the active site has not been identified. Dowd and colleagues [Dowd, P., Hershline, R., Ham, S. W. & Naganathan, S. (1995) Science 269, 1684–1691] have proposed that a weak base (cysteine) produces a strong base (oxygenated KH2) capable of generating the carbanion. To define the active site and test this model, we identified the amino acids that participate in these reactions. N-ethyl maleimide inhibited epoxidation and carboxylation, and both activities were equally protected by KH2 preincubation. Amino acid analysis of 14C- N-ethyl maleimide-modified human carboxylase revealed 1.8–2.3 reactive residues and a specific activity of 7 × 108 cpm/hr per mg. Tryptic digestion and liquid chromatography electrospray mass spectrometry identified Cys-99 and Cys-450 as active site residues. Mutation to serine reduced both epoxidation and carboxylation, to 0.2% (Cys-99) or 1% (Cys-450), and increased the Kms for a glutamyl substrate 6- to 8-fold. Retention of some activity indicates a mechanism for enhancing cysteine/serine nucleophilicity, a property shared by many active site thiol enzymes. These studies, which represent a breakthrough in defining the carboxylase active site, suggest a revised model in which the glutamyl substrate indirectly coordinates at least one thiol, forming a catalytic complex that ionizes a thiol to initiate KH2 oxygenation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structures of the ligand-binding domain (LBD) of the vitamin D receptor complexed to 1α,25(OH)2D3 and the 20-epi analogs, MC1288 and KH1060, show that the protein conformation is identical, conferring a general character to the observation first made for retinoic acid receptor (RAR) that, for a given LBD, the agonist conformation is unique, the ligands adapting to the binding pocket. In all complexes, the A- to D-ring moieties of the ligands adopt the same conformation and form identical contacts with the protein. Differences are observed only for the 17β-aliphatic chains that adapt their conformation to anchor the 25-hydroxyl group to His-305 and His-397. The inverted geometry of the C20 methyl group induces different paths of the aliphatic chains. The ligands exhibit a low-energy conformation for MC1288 and a more strained conformation for the two others. KH1060 compensates this energy cost by additional contacts. Based on the present data, the explanation of the superagonist effect is to be found in higher stability and longer half-life of the active complex, thereby excluding different conformations of the ligand binding domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 1,25-dihydroxyvitamin D3 [1,25-(OH)2vitamin D3] analog KH1060 exerts very potent effects on cell proliferation and cell differentiation via the vitamin D receptor (VDR). However, the activities of KH1060 are not associated with an increased affinity for the VDR. We now show that increased stabilization of the VDR-KH1060 complex could be an explanation for its high potencies. VDR half-life studies performed with cycloheximide-translational blocked rat osteoblast-like ROS 17/2.8 cells demonstrated that, in the absence of ligand, VDR levels rapidly decreased. After 2 hr, less than 10% of the initial VDR level could be measured. In the presence of 1,25-(OH)2vitamin D3, the VDR half-life was 15 hr. After 24 hr. less than 20% of the initial VDR content was detectable, whereas, at this time-point, when the cells were incubated with KH1060 80% of the VDR was still present. Differences in 1,25-(OH)2vitamin D3- and KH1060-induced conformational changes of the VDR could underlie the increased VDR stability. As assessed by limited proteolytic digestion analysis, both 1,25-(OH)2vitamin D3 and KH1060 caused a specific conformational change of the VDR. Compared with 1,25-(OH)2vitamin D3, KH1060 induced a conformational change that led to a far more dramatic protection of the VDR against proteolytic degradation. In conclusion, the altered VDR stability and the possibly underlying change in VDR conformation caused by KH1060 could be an explanation for its enhanced bioactivity.