4 resultados para Virgilio Maron, Publio, 70-19 a. C.

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rap phosphatases are a recently discovered family of protein aspartate phosphatases that dephosphorylate the Spo0F--P intermediate of the phosphorelay, thus preventing sporulation of Bacillus subtilis. They are regulators induced by physiological processes that are antithetical to sporulation. The RapA phosphatase is induced by the ComP-ComA two-component signal transduction system responsible for initiating competence. RapA phosphatase activity was found to be controlled by a small protein, PhrA, encoded on the same transcript as RapA. PhrA resembles secreted proteins and the evidence suggests that it is cleaved by signal peptidase I and a 19-residue C-terminal domain is secreted from the cell. The sporulation deficiency caused by the uncontrolled RapA activity of a phrA mutant can be complemented by synthetic peptides comprising the last six or more of the C-terminal residues of PhrA. Whether the peptide controls RapA activity directly or by regulating its synthesis remains to be determined. Complementation of the phrA mutant can also be obtained in mixed cultures with a wild-type strain, suggesting the peptide may serve as a means of communication between cells. Importation of the secreted peptide required the oligopeptide transport system. The sporulation deficiency of oligopeptide transport mutants can be suppressed by mutating the rapA and rapB genes or by introduction of a spo0F mutation Y13S that renders the protein insensitive to Rap phosphatases. The data indicate that the sporulation deficiency of oligopeptide transport mutants is due to their inability to import the peptides controlling Rap phosphatases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The cytosolic 70-kDa heat shock proteins (Hsp70s), Ssa and Ssb, of Saccharomyces cerevisiae are functionally distinct. Here we report that the ATPase activities of these two classes of Hsp70s exhibit different kinetic properties. The Ssa ATPase has properties similar to those of other Hsp70s studied, such as DnaK and Hsc70. Ssb, however, has an unusually low steady-state affinity for ATP but a higher maximal velocity. In addition, the ATPase activity of Hsp70s, like that of Ssa1, depends on the addition of K+ whereas Ssb activity does not. Suprisingly, the isolated 44-kDa ATPase domain of Ssb has a Km and Vmax for ATP hydrolysis similar to those of Ssa, rather than those of full length Ssb. Analysis of Ssa/Ssb fusion proteins demonstrates that the Ssb peptide-binding domain fused to the Ssa ATPase domain generates an ATPase of relatively high activity and low steady-state affinity for ATP similar to that of native Ssb. Therefore, at least some of the biochemical differences between the ATPases of these two classes of Hsp70s are not intrinsic to the ATPase domain itself. The differential influence of the peptide-binding domain on the ATPase domain may, in part, explain the functional uniqueness of these two classes of Hsp70s.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bovine heart cytochrome c oxidase is an electron-current driven proton pump. To investigate the mechanism by which this pump operates it is important to study individual electron- and proton-transfer reactions in the enzyme, and key reactions in which they are kinetically and thermodynamically coupled. In this work, we have simultaneously measured absorbance changes associated with electron-transfer reactions and conductance changes associated with protonation reactions following pulsed illumination of the photolabile complex of partly reduced bovine cytochrome c oxidase and carbon monoxide. Following CO dissociation, several kinetic phases in the absorbance changes were observed with time constants ranging from approximately 3 microseconds to several milliseconds, reflecting internal electron-transfer reactions within the enzyme. The data show that the rate of one of these electron-transfer reactions, from cytochrome a3 to a on a millisecond time scale, is controlled by a proton-transfer reaction. These results are discussed in terms of a model in which cytochrome a3 interacts electrostatically with a protonatable group, L, in the vicinity of the binuclear center, in equilibrium with the bulk through a proton-conducting pathway, which determines the rate of proton transfer (and indirectly also of electron transfer). The interaction energy of cytochrome a3 with L was determined independently from the pH dependence of the extent of the millisecond-electron transfer and the number of protons released, as determined from the conductance measurements. The magnitude of the interaction energy, 70 meV (1 eV = 1.602 x 10(-19) J), is consistent with a distance of 5-10 A between cytochrome a3 and L. Based on the recently determined high-resolution x-ray structures of bovine and a bacterial cytochrome c oxidase, possible candidates for L and a physiological role for L are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.