3 resultados para Vine grower

em National Center for Biotechnology Information - NCBI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of the continuum between geographic races and species provide the clearest insights into the causes of speciation. Here we report on mate choice and hybrid viability experiments in a pair of warningly colored butterflies, Heliconius erato and Heliconius himera, that maintain their genetic integrity in the face of hybridization. Hybrid sterility and inviability have been unimportant in the early stages of speciation of these two Heliconius. We find no evidence of reduced fecundity, egg hatch, or larval survival nor increases in developmental time in three generations of hybrid crosses. Instead, speciation in this pair appears to have been catalyzed by the association of strong mating preferences with divergence in warning coloration and ecology. In mate choice experiments, matings between the two species are a tenth as likely as matings within species. F1 hybrids of both sexes mate frequently with both pure forms. However, male F1 progeny from crosses between H. himera mothers and H. erato fathers have somewhat reduced mating success. The strong barrier to gene flow provided by divergence in mate preference is probably enhanced by frequency-dependent predation against hybrids similar to the type known to occur across interracial hybrid zones of H. erato. In addition, the transition between this pair falls at the boundary between wet and dry forest, and rare hybrids may also be selected against because they are poorly adapted to either biotope. These results add to a growing body of evidence that challenge the importance of genomic incompatibilities in the earliest stages of speciation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cat's claw (Doxantha unguis-cati L.) vine accumulates nearly 80% palmitoleic acid (16:1Δ9) plus cis-vaccenic acid (18:1Δ11) in its seed oil. To characterize the biosynthetic origin of these unusual fatty acids, cDNAs for acyl-acyl carrier protein (acyl-ACP) desaturases were isolated from developing cat's claw seeds. The predominant acyl-ACP desaturase cDNA identified encoded a polypeptide that is closely related to the stearoyl (Δ9–18:0)-ACP desaturase from castor (Ricinis communis L.) and other species. Upon expression in Escherichia coli, the cat's claw polypeptide functioned as a Δ9 acyl-ACP desaturase but displayed a distinct substrate specificity for palmitate (16:0)-ACP rather than stearate (18:0)-ACP. Comparison of the predicted amino acid sequence of the cat's claw enzyme with that of the castor Δ9–18:0-ACP desaturase suggested that a single amino acid substitution (L118W) might account in large part for the differences in substrate specificity between the two desaturases. Consistent with this prediction, conversion of leucine-118 to tryptophan in the mature castor Δ9–18:0-ACP desaturase resulted in an 80-fold increase in the relative specificity of this enzyme for 16:0-ACP. The alteration in substrate specificity observed in the L118W mutant is in agreement with a crystallographic model of the proposed substrate-binding pocket of the castor Δ9–18:0-ACP desaturase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prolonged incubation of NIH 3T3 cells under the growth constraint of confluence results in a persistent impairment of proliferation when the cells are subcultured at low density and a greatly increased probability of neoplastic transformation in assays for transformation. These properties, along with the large accumulation of age pigment bodies in the confluent cells, are cardinal cellular characteristics of aging in organisms and validate the system as a model of cellular aging. Two cultures labeled alpha and beta were obtained after prolonged confluence; both were dominated by cells that were both slowed in growth at low population density and enhanced in growth capacity at high density, a marker of neoplastic transformation. An experiment was designed to study the reversibility of these age-related properties by serial subculture at low density of the two uncloned cultures and their progeny clones derived from assuredly single cells. Both uncloned cultures had many transformed cells and a reduced growth rate on subculture. Serial subculture resulted in a gradual increase in growth rates of both populations, but a reversal of transformation only in the alpha population. The clones originating from both populations varied in the degree of growth impairment and neoplastic transformation. None of the alpha clones increased in growth rate on low density passage nor did the transformed clones among them revert to normal growth behavior. The fastest growing beta clone was originally slower than the control clone, but caught up to it after four weekly subcultures. The other beta clones retained their reduced growth rates. Four of the five beta clones, including the fastest grower, were transformed, and none reverted on subculture. We conclude that the apparent reversal of impaired growth and transformation in the uncloned parental alpha population resulted from the selective growth at low density of fast growing nontransformed clones. The reversal of impaired growth in the uncloned parental beta population was also the result of selective growth of fast growing clones, but in this case they were highly transformed so no apparent reversal of transformation occurred. The clonal results indicate that neither the impaired growth nor the neoplastic transformation found in aging cells is reversible. We discuss the possible contribution of epigenetic and genetic processes to these irreversible changes.