8 resultados para Ventricular Dysfunction Right
em National Center for Biotechnology Information - NCBI
Resumo:
The role and even the existence of myocyte proliferation in the adult heart remain controversial. Documentation of cell cycle regulators, DNA synthesis, and mitotic images has not modified the view that myocardial growth can only occur from hypertrophy of an irreplaceable population of differentiated myocytes. To improve understanding the biology of the heart and obtain supportive evidence of myocyte replication, three indices of cell proliferation were analyzed in dogs affected by a progressive deterioration of cardiac performance and dilated cardiomyopathy. The magnitude of cycling myocytes was evaluated by the expression of Ki67 in nuclei. Ki67 labeling of left ventricular myocytes increased 5-fold, 12-fold, and 17-fold with the onset of moderate and severe ventricular dysfunction and overt failure, respectively. Telomerase activity in vivo is present only in multiplying cells; this enzyme increased 2.4-fold and 3.1-fold in the decompensated heart, preserving telomeric length in myocytes. The contribution of cycling myocytes to telomerase activity was determined by the colocalization of Ki67 and telomerase in myocyte nuclei. More than 50% of Ki67-positive cells expressed telomerase in the overloaded myocardium, suggesting that these myocytes were the morphological counterpart of the biochemical assay of enzyme activity. Moreover, we report that 20–30% of canine myocytes were telomerase competent, and this value was not changed by cardiac failure. In conclusion, the enhanced expression of Ki67 and telomerase activity, in combination with Ki67-telomerase labeling of myocyte nuclei, support the notion that myocyte proliferation contributes to cardiac hypertrophy of the diseased heart.
Resumo:
Objectives: To determine whether blood natriuretic peptide concentrations are helpful in identifying or excluding left ventricular systolic dysfunction in stable survivors of acute myocardial infarction.
Resumo:
Long QT syndrome (LQT) is an autosomal dominant disorder that can cause sudden death from cardiac arrhythmias. We recently discovered that mutations in HERG, a K+-channel gene, cause chromosome 7-linked LQT. Heterologous expression of HERG in Xenopus oocytes revealed that HERG current was similar to a well-characterized cardiac delayed rectifier K+ current, IKr, and led to the hypothesis that mutations in HERG reduced IKr, causing prolonged myocellular action potentials. To define the mechanism of LQT, we injected oocytes with mutant HERG complementary RNAs, either singly or in combination with wild-type complementary RNA. Some mutations caused loss of function, whereas others caused dominant negative suppression of HERG function. These mutations are predicted to cause a spectrum of diminished IKr and delayed ventricular repolarization, consistent with the prolonged QT interval observed in individuals with LQT.