2 resultados para Ventilatory Inefficiency

em National Center for Biotechnology Information - NCBI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transposon mutagenesis provides a direct selection for mutants and is an extremely powerful technique to analyze genetic functions in a variety of prokaryotes. Transposon mutagenesis of Mycobacterium tuberculosis has been limited in part because of the inefficiency of the delivery systems. This report describes the development of conditionally replicating shuttle phasmids from the mycobacteriophages D29 and TM4 that enable efficient delivery of transposons into both fast- and slow-growing mycobacteria. These shuttle phasmids consist of an Escherichia coli cosmid vector containing either a mini-Tn10(kan) or Tn5367 inserted into a nonessential region of the phage genome. Thermosensitive mutations were created in the mycobacteriophage genome that allow replication at 30°C but not at 37°C (TM4) or 38.5°C (D29). Infection of mycobacteria at the nonpermissive temperature results in highly efficient transposon delivery to the entire population of mycobacterial cells. Transposition of mini-Tn10(kan) occurred in a site-specific fashion in M. smegmatis whereas Tn5367 transposed apparently randomly in M. phlei, Bacille Calmette–Guérin (BCG), and M. tuberculosis. Sequence analysis of the M. tuberculosis and BCG chromosomal regions adjacent to Tn5367 insertions, in combination with M. tuberculosis genomic sequence and physical map data, indicates that the transpositions have occurred randomly in diverse genes in every quadrant of the genome. Using this system, it has been readily possible to generate libraries containing thousands of independent mutants of M. phlei, BCG, and M. tuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Compensatory ventilatory responses to increased inspiratory loading are essential for adequate breathing regulation in a number of pulmonary diseases; however, the human brain sites mediating such responses are unknown. Midsagittal and axial images were acquired in 11 healthy volunteers during unloaded and loaded (30 cmH2O; 1 cmH2O = 98 Pa) inspiratory breathing, by using functional magnetic resonance imaging (fMRI) strategies (1.5-tesla MR; repetition time, 72 msec; echo time, 45 msec; flip angle, 30 degrees; field of view, 26 cm; slice thickness, 5 mm; number of excitations, 1; matrix, 128 x 256). Digital image subtractions and region of interest analyses revealed significantly increased fMRI signal intensity in discrete areas of the ventral and dorsal pons, interpeduncular nucleus, basal forebrain, putamen, and cerebellar regions. Upon load withdrawal, certain regions displayed a rapid fMRI signal off-transient, while in others, a slower fMRI signal decay emerged. Sustained loading elicited slow decreases in fMRI signal across activated regions, while second application of an identical load resulted in smaller signal increases compared to initial signal responses (P < 0.001). A moderate inspiratory load is associated with consistent regional activation of discrete brain locations; certain of these regions have been implicated in mediation of loaded breathing in animal models. We speculate that temporal changes in fMRI signal may indicate respiratory after-discharge and/or habituation phenomena.