3 resultados para Vascugraft(r) Arterial Prosthesis
em National Center for Biotechnology Information - NCBI
Resumo:
The combined effects of hypoxia and interleukin 1, lipopolysaccharide, or tumor necrosis factor alpha on the expression of genes encoding endothelial constitutive and inducible nitric oxide synthases, endothelin 1, interleukin 6, and interleukin 8 were investigated in human primary pulmonary endothelial cells and whole pulmonary artery organoid cultures. Hypoxia decreased the expression of constitutive endothelial nitric oxide synthase (NOS-3) mRNA and NOS-3 protein as compared with normoxic conditions. The inhibition of expression of NOS-3 corresponded with a reduced production of NO. A combination of hypoxia with bacterial lipopolysaccharide, interleukin 1 beta, or tumor necrosis factor alpha augmented both effects. In contrast, the combination of hypoxia and the inflammatory mediators superinduced the expression of endothelin 1, interleukin 6, and interleukin 8. Here, we have shown that inflammatory mediators aggravate the effect of hypoxia on the down-regulation of NOS-3 and increase the expression of proinflammatory cytokines in human pulmonary endothelial cells and whole pulmonary artery organoid cultures.
Resumo:
Arterial injury induces a series of proliferative, vasoactive, and inflammatory responses that lead to vascular proliferative diseases, including atherosclerosis and restenosis. Although several factors have been defined which stimulate this process in vivo, the role of specific cellular gene products in limiting this response is not well understood. The p21 cyclin-dependent kinase inhibitor affects cell cycle progression, senescence, and differentiation in transformed cells, but its expression in injured blood vessels has not been investigated. In this study, we report that p21 protein is induced in porcine arteries following balloon catheter injury and suggest that p21 is likely to play a role in limiting arterial cell proliferation in vivo. Vascular endothelial and smooth muscle cell growth was arrested through the ability of p21 to inhibit progression through the G1 phase of the cell cycle. Following injury to porcine arteries, p21 gene product was detected in the neointima and correlated inversely with the location and kinetics of intimal cell proliferation. Direct gene transfer of p21 using an adenoviral vector into balloon injured porcine arteries inhibited the development of intimal hyperplasia. Taken together, these findings suggest that p21, and possibly related cyclin-dependent kinase inhibitors, may normally regulate cellular proliferation following arterial injury, and strategies to increase its expression may prove therapeutically beneficial in vascular diseases.
Resumo:
von Willebrand factor (vWF) is essential for the induction of occlusive thrombosis in stenosed and injured pig arteries and for normal hemostasis. To separate the relative contribution of plasma and platelet vWF to arterial thrombosis, we produced chimeric normal and von Willebrand disease pigs by crossed bone marrow transplantation; von Willebrand disease (vWD) pigs were engrafted with normal pig bone marrow and normal pigs were engrafted with vWD bone marrow. Thrombosis developed in the chimeric normal pigs that showed normal levels of plasma vWF and an absence of platelet vWF; but no thrombosis occurred in the chimeric vWD pigs that demonstrated normal platelet vWF and an absence of plasma vWF. The ear bleeding times of the chimeric pigs were partially corrected by endogenous plasma vWF but not by platelet vWF. Our animal model demonstrated that vWF in the plasma compartment is essential for the development of arterial thrombosis and that it also contributes to the maintenance of bleeding time and hemostasis.