3 resultados para Variety scale
em National Center for Biotechnology Information - NCBI
Resumo:
The recent ability to sequence whole genomes allows ready access to all genetic material. The approaches outlined here allow automated analysis of sequence for the synthesis of optimal primers in an automated multiplex oligonucleotide synthesizer (AMOS). The efficiency is such that all ORFs for an organism can be amplified by PCR. The resulting amplicons can be used directly in the construction of DNA arrays or can be cloned for a large variety of functional analyses. These tools allow a replacement of single-gene analysis with a highly efficient whole-genome analysis.
Resumo:
We have undertaken an extensive screen to identify Saccharomyces cerevisiae genes whose products are involved in cell cycle progression. We report the identification of 113 genes, including 19 hypothetical ORFs, which confer arrest or delay in specific compartments of the cell cycle when overexpressed. The collection of genes identified by this screen overlaps with those identified in loss-of-function cdc screens but also includes genes whose products have not previously been implicated in cell cycle control. Through analysis of strains lacking these hypothetical ORFs, we have identified a variety of new CDC and checkpoint genes.
Resumo:
There is a continual influx of heavy metal contaminants and pollutants into the biosphere from both natural and anthropogenic sources. A complex variety of abiotic and biotic processes affects their speciation and distribution, including adsorption onto and desorption from mineral surfaces, incorporation in precipitates or coprecipitates, release through the dissolution of minerals, and interactions with plants and microbes. Some of these processes can effectively isolate heavy metals from the biosphere, whereas others cause their release or transformation to different species that may be more (or less) bioavailable and/or toxic to organisms. Here we focus on abiotic adsorption and precipitation or coprecipitation processes involving the common heavy metal contaminant lead and the metalloids arsenic and selenium in mine tailings and contaminated soils. We have used extremely intense x-rays from synchrotron sources and a structure-sensitive method known as x-ray absorption fine structure (XAFS) spectroscopy to determine the molecular-level speciation of these elements at concentrations of 50 to several thousand ppm in the contaminated environmental samples as well as in synthetic sorption samples. Our XAFS studies of As and Pb in the mine tailings show that up to 50% of these contaminants in the samples studied may be present as adsorbed species on mineral surfaces, which makes them potentially more bioavailable than when present in sparingly soluble solid phases. Our XAFS studies of Se(VI) sorption on Fe2+-containing sulfates show that this element undergoes redox reactions that transform it into less bioavailable and less toxic species. This type of information on molecular-level speciation of heavy metal and metalloid contaminants in various environmental settings is needed to prioritize remediation efforts and to assess their potential hazard to humans and other organisms.