3 resultados para Vaginal Neoplasms
em National Center for Biotechnology Information - NCBI
Resumo:
High-risk human papillomaviruses (HPVs), including type 16, have been identified as factors in cervical carcinogenesis. However, the presence and expression of the virus per se appear to be insufficient for carcinogenesis. Rather, cofactors most likely are necessary in addition to viral gene expression to initiate neoplasia. One candidate cofactor is prolonged exposure to sex hormones. To examine the possible effects of estrogen on HPV-associated neoplasia, we treated transgenic mice expressing the oncogenes of HPV16 under control of the human keratin-14 promoter (K14-HPV16 transgenic mice) and nontransgenic control mice with slow release pellets of 17beta-estradiol. Squamous carcinomas developed in a multistage pathway exclusively in the vagina and cervix of K14-HPV16 transgenic mice. Estrogen-induced carcinogenesis was accompanied by an incremental increase in the incidence and distribution of proliferating cells solely within the cervical and vaginal squamous epithelium of K14-HPV16 mice. Expression of the HPV transgenes in untreated transgenic mice was detectable only during estrus; estrogen treatment resulted in transgene expression that was persistent but not further upregulated, remaining at low levels at all stages of carcinogenesis. The data demonstrate a novel mechanism of synergistic cooperation between chronic estrogen exposure and the oncogenes of HPV16 that coordinates squamous carcinogenesis in the female reproductive tract of K14-HPV16 transgenic mice.
Resumo:
Expression of cDNA libraries from human melanoma, renal cancer, astrocytoma, and Hodgkin disease in Escherichia coli and screening for clones reactive with high-titer IgG antibodies in autologous patient serum lead to the discovery of at least four antigens with a restricted expression pattern in each tumor. Besides antigens known to elicit T-cell responses, such as MAGE-1 and tyrosinase, numerous additional antigens that were overexpressed or specifically expressed in tumors of the same type were identified. Sequence analyses suggest that many of these molecules, besides being the target of a specific immune response, might be of relevance for tumor growth. Antibodies to a given antigen were usually confined to patients with the same tumor type. The unexpected frequency of human tumor antigens, which can be readily defined at the molecular level by the serological analysis of autologous tumor cDNA expression cloning, indicates that human neoplasms elicit multiple specific immune responses in the autologous host and provides diagnostic and therapeutic approaches to human cancer.