37 resultados para Vacuolar membrane ABC transporters
em National Center for Biotechnology Information - NCBI
Resumo:
The molecular identification of ion channels in internal membranes has made scant progress compared with the study of plasma membrane ion channels. We investigated a prominent voltage-dependent, cation-selective, and calcium-activated vacuolar ion conductance of 320 pS (yeast vacuolar conductance, YVC1) in Saccharomyces cerevisiae. Here we report on a gene, the deduced product of which possesses significant homology to the ion channel of the transient receptor potential (TRP) family. By using a combination of gene deletion and re-expression with direct patch clamping of the yeast vacuolar membrane, we show that this yeast TRP-like gene is necessary for the YVC1 conductance. In physiological conditions, tens of micromolar cytoplasmic Ca2+ activates the YVC1 current carried by cations including Ca2+ across the vacuolar membrane. Immunodetection of a tagged YVC1 gene product indicates that YVC1 is primarily localized in the vacuole and not other intracellular membranes. Thus we have identified the YVC1 vacuolar/lysosomal cation-channel gene. This report has implications for the function of TRP channels in other organisms and the possible molecular identification of vacuolar/lysosomal ion channels in other eukaryotes.
Resumo:
Previous experiments suggested that trafficking of the a-factor transporter Ste6 of Saccharomyces cerevisiae to the yeast vacuole is regulated by ubiquitination. To define the ubiquitination-dependent step in the trafficking pathway, we examined the intracellular localization of Ste6 in the ubiquitination-deficient doa4 mutant by immunofluorescence experiments, with a Ste6-green fluorescent protein fusion protein and by sucrose density gradient fractionation. We found that Ste6 accumulated at the vacuolar membrane in the doa4 mutant and not at the cell surface. Experiments with a doa4 pep4 double mutant showed that Ste6 uptake into the lumen of the vacuole is inhibited in the doa4 mutant. The uptake defect could be suppressed by expression of additional ubiquitin, indicating that it is primarily the result of a lowered ubiquitin level (and thus of reduced ubiquitination) and not the result of a deubiquitination defect. Based on our findings, we propose that ubiquitination of Ste6 or of a trafficking factor is required for Ste6 sorting into the multivesicular bodies pathway. In addition, we obtained evidence suggesting that Ste6 recycles between an internal compartment and the plasma membrane.
Resumo:
The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half ATP-binding cassette (ABC) transporters in the human peroxisome membrane. ALDP and PMP70 share sequence homology and both are implicated in genetic diseases. PXA1 and YKL741 are Saccharomyces cerevisiae genes that encode homologs of ALDP and PMP70. Pxa1p, a putative ortholog of ALDP, is involved in peroxisomal beta-oxidation of fatty acids while YKL741 is an open reading frame found by the yeast genome sequencing project. Here we designate YKL741 as PXA2 and show that its protein product, Pxa2p, like Pxa1p, is associated with peroxisomes but not required for their assembly. Yeast strains carrying gene disruption of PXA1, PXA2, or both have similar and, in the case of the latter, nonadditive phenotypes. We also find that the stability of Pxa1p, but not Pxa2p, is markedly reduced in the absence of the other. Finally, we find that Pxa1p and Pxa2p coimmuno-precipitate. These genetic and physical data suggest that Pxa1p and Pxa2p heterodimerize to form a complete peroxisomal ABC transporter involved in fatty acid beta-oxidation. This result predicts the presence of similar heterodimeric ABC transporters in the mammalian peroxisome membrane.
Resumo:
Most intracellular pathogens avoid lysing their host cells during invasion by wrapping themselves in a vacuolar membrane. This parasitophorous vacuole membrane (PVM) is often retained, serving as a critical transport interface between the parasite and the host cell cytoplasm. To test whether the PVM formed by the parasite Toxoplasma gondii is derived from host cell membrane or from lipids secreted by the parasite, we used time-resolved capacitance measurements and video microscopy to assay host cell surface area during invasion. We observed no significant change in host cell surface area during PVM formation, demonstrating that the PVM consists primarily of invaginated host cell membrane. Pinching off of the PVM from the host cell membrane occurred after an unexpected delay (34-305 sec) and was seen as a 0.219 +/- 0.006 pF drop in capacitance, which corresponds well to the predicted surface area of the entire PVM (30-33 microns2). The formation and closure of a fission pore connecting the extracellular medium and the vacuolar space was detected as the PVM pinched off. This final stage of parasite entry was accomplished without any breach in cell membrane integrity.
Resumo:
Adrenoleukodystrophy (ALD), a severe demyelinating disease, is caused by mutations in a gene coding for a peroxisomal membrane protein (ALDP), which belongs to the superfamily of ATP binding cassette (ABC) transporters and has the structure of a half transporter. ALDP showed 38% sequence identity with another peroxisomal membrane protein, PMP70, up to now its closest homologue. We describe here the cloning and characterization of a mouse ALD-related gene (ALDR), which codes for a protein with 66% identity with ALDP and shares the same half transporter structure. The ALDR protein was overexpressed in COS cells and was found to be associated with the peroxisomes. The ALD and ALDR genes show overlapping but clearly distinct expression patterns in mouse and may thus play similar but nonequivalent roles. The ALDR gene, which appears highly conserved in man, is a candidate for being a modifier gene that could account for some of the extreme phenotypic variability of ALD. The ALDR gene is also a candidate for being implicated in one of the complementation groups of Zellweger syndrome, a genetically heterogeneous disorder of peroxisome biogenesis, rare cases of which were found to be associated with mutations in the PMP70 (PXMP1) gene.
Resumo:
The adrenoleukodystrophy protein (ALDp) is an ATP-binding cassette (ABC) transporter in the human peroxisome membrane. It is defective in X chromosome-linked adrenoleukodystrophy (ALD), a neurodegenerative disorder with impaired peroxisomal oxidation of very long chain fatty acids. We report cloning and characterization of PXA1, a yeast gene encoding a protein (Pxa1p) exhibiting high similarity to ALDp. Disruption of PXA1 results in impaired growth on oleic acid and reduced ability to oxidize oleate. Pxa1p is peroxisome associated; however, in the PXA1 mutant yeast, as in ALD cells, peroxisomes are morphologically intact. Disruption of a second yeast gene, YKL741, which encodes a more distantly related ALDp homolog (Yk174p), in either wild-type or PXA1 mutant yeast, results in a growth phenotype identical to that of the PXA1 mutant. This result suggests that Yk1741p and Pxa1p may be subunits of the same transporter. Sequence analysis of Pxa1p, ALDp, and related ABC transporters reveals a possible fatty acid binding domain and a 14-amino acid EAA-like motif, previously described only in prokaryotes. Because of the similarities in sequence and function, we propose that Pxa1p is the Saccharomyces cerevisiae ortholog of ALDp.
Resumo:
The malarial parasite dramatically alters its host cell by exporting and targeting proteins to specific locations within the erythrocyte. Little is known about the mechanisms by which the parasite is able to carry out this extraparasite transport. The fungal metabolite brefeldin A (BFA) has been used to study the secretory pathway in eukaryotes. BFA treatment of infected erythrocytes inhibits protein export and results in the accumulation of exported Plasmodium proteins into a compartment that is at the parasite periphery. Parasite proteins that are normally localized to the erythrocyte membrane, to nonmembrane bound inclusions in the erythrocyte cytoplasm, or to the parasitophorous vacuolar membrane accumulate in this BFA-induced compartment. A single BFA-induced compartment is detected per parasite and the various exported proteins colocalize to this compartment regardless of their final destinations. Parasite membrane proteins do not accumulate in this novel compartment, but accumulate in the endoplasmic reticulum (ER), suggesting that the parasite has two secretory pathways. This alternate secretory pathway is established immediately after merozoite invasion and at least some dense granule proteins also use the alternate pathway. The BFA-induced compartment exhibits properties that are similar to the ER, but it is clearly distinct from the ER. We propose to call this new organelle the secondary ER of apicomplexa. This ER-like organelle is an early, if not the first, step in the export of Plasmodium proteins into the host erythrocyte.
Resumo:
ATP-binding cassette (ABC) transporters bind and hydrolyze ATP. In the cystic fibrosis transmembrane conductance regulator Cl− channel, this interaction with ATP generates a gating cycle between a closed (C) and two open (O1 and O2) conformations. To understand better how ATP controls channel activity, we examined gating transitions from the C to the O1 and O2 states and from these open states to the C conformation. We made three main observations. First, we found that the channel can open into either the O1 or O2 state, that the frequency of transitions to both states was increased by ATP concentration, and that ATP increased the relative proportion of openings into O1 vs. O2. These results indicate that ATP can interact with the closed state to open the channel in at least two ways, which may involve binding to nucleotide-binding domains (NBDs) NBD1 and NBD2. Second, ATP prolonged the burst duration and altered the way in which the channel closed. These data suggest that ATP also interacts with the open channel. Third, the channel showed runs of specific types of open–closed transitions. This finding suggests a mechanism with more than one cycle of gating transitions. These data suggest models to explain how ATP influences conformational transitions in cystic fibrosis transmembrane conductance regulator and perhaps other ABC transporters.
Resumo:
The accessory protein negative factor (Nef) from human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is required for optimal viral infectivity and the progression to acquired immunodeficiency syndrome (AIDS). Nef interacts with the endocytic machinery, resulting in the down-regulation of cluster of differentiation antigen 4 (CD4) and major histocompatibility complex class I (MHCI) molecules on the surface of infected cells. Mutations in the C-terminal flexible loop of Nef result in a lower rate of internalization by this viral protein. However, no loop-dependent binding of Nef to adaptor protein-2 (AP-2), which is the adaptor protein complex that is required for the internalization of proteins from the plasma membrane, could be demonstrated. In this study we investigated the relevance of different motifs in Nef from SIVmac239 for its internalization, CD4 down-regulation, binding to components of the trafficking machinery, and viral infectivity. Our data suggest that the binding of Nef to the catalytic subunit H of the vacuolar membrane ATPase (V-ATPase) facilitates its internalization. This binding depends on the integrity of the whole flexible loop. Subsequent studies on Nef mutant viruses revealed that the flexible loop is essential for optimal viral infectivity. Therefore, our data demonstrate how Nef contacts the endocytic machinery in the absence of its direct binding to AP-2 and suggest an important role for subunit H of the V-ATPase in viral infectivity.
Resumo:
To identify and characterize individual Ca2+ pumps, we have expressed an Arabidopsis ECA1 gene encoding an endoplasmic reticulum-type Ca2+-ATPase homolog in the yeast (Saccharomyces cerevisiae) mutant K616. The mutant (pmc1pmr1cnb1) lacks a Golgi and a vacuolar membrane Ca2+ pump and grows very poorly on Ca2+-depleted medium. Membranes isolated from the mutant showed high H+/Ca2+-antiport but no Ca2+-pump activity. Expression of ECA1 in endomembranes increased mutant growth by 10- to 20-fold in Ca2+-depleted medium. 45Ca2+ pumping into vesicles from ECA1 transformants was detected after the H+/Ca2+-antiport activity was eliminated with bafilomycin A1 and gramicidin D. The pump had a high affinity for Ca2+ (Km = 30 nm) and displayed two affinities for ATP (Km of 20 and 235 μm). Cyclopiazonic acid, a specific blocker of animal sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, inhibited Ca2+ transport (50% inhibition dose = 3 nmol/mg protein), but thapsigargin (3 μm) did not. Transport was insensitive to calmodulin. These results suggest that this endoplasmic reticulum-type Ca2+-ATPase could support cell growth in plants as in yeast by maintaining submicromolar levels of cytosolic Ca2+ and replenishing Ca2+ in endomembrane compartments. This study demonstrates that the yeast K616 mutant provides a powerful expression system to study the structure/function relationships of Ca2+ pumps from eukaryotes.
Resumo:
Tonoplast-enriched vesicles isolated from maize (Zea mays L.) coleoptiles and seeds synthesize ATP from ADP and inorganic phosphate (Pi) and inorganic pyrophosphate from Pi. The synthesis is consistent with reversal of the catalytic cycle of the H+-ATPase and H+-pyrophosphatase (PPase) vacuolar membrane-bound enzymes. This was monitored by measuring the exchange reaction that leads to 32Pi incorporation into ATP or inorganic pyrophosphate. The reversal reactions of these enzymes were dependent on the proton gradient formed across the vesicle membrane and were susceptible to the uncoupler carbonyl cyanide p(trifluoromethoxy)-phenylhydrazone and the detergent Triton X-100. Comparison of the two H+ pumps showed that the H+-ATPase was more active than H+-PPase in coleoptile tonoplast vesicles, whereas in seed vesicles H+-PPase activity was clearly dominant. These findings may reflect the physiological significance of these enzymes in different tissues at different stages of development and/or differentiation.
Resumo:
Streptomyces lavendulae produces complestatin, a cyclic peptide natural product that antagonizes pharmacologically relevant protein–protein interactions including formation of the C4b,2b complex in the complement cascade and gp120-CD4 binding in the HIV life cycle. Complestatin, a member of the vancomycin group of natural products, consists of an α-ketoacyl hexapeptide backbone modified by oxidative phenolic couplings and halogenations. The entire complestatin biosynthetic and regulatory gene cluster spanning ca. 50 kb was cloned and sequenced. It consisted of 16 ORFs, encoding proteins homologous to nonribosomal peptide synthetases, cytochrome P450-related oxidases, ferredoxins, nonheme halogenases, four enzymes involved in 4-hydroxyphenylglycine (Hpg) biosynthesis, transcriptional regulators, and ABC transporters. The nonribosomal peptide synthetase consisted of a priming module, six extending modules, and a terminal thioesterase; their arrangement and domain content was entirely consistent with functions required for the biosynthesis of a heptapeptide or α-ketoacyl hexapeptide backbone. Two oxidase genes were proposed to be responsible for the construction of the unique aryl-ether-aryl-aryl linkage on the linear heptapeptide intermediate. Hpg, 3,5-dichloro-Hpg, and 3,5-dichloro-hydroxybenzoylformate are unusual building blocks that repesent five of the seven requisite monomers in the complestatin peptide. Heterologous expression and biochemical analysis of 4-hydroxyphenylglycine transaminon confirmed its role as an aminotransferase responsible for formation of all three precursors. The close similarity but functional divergence between complestatin and chloroeremomycin biosynthetic genes also presents a unique opportunity for the construction of hybrid vancomycin-type antibiotics.
Resumo:
Plant cells contain two major pools of K+, one in the vacuole and one in the cytosol. The behavior of K+ concentrations in these pools is fundamental to understanding the way this nutrient affects plant growth. Triple-barreled microelectrodes have been used to obtain the first fully quantitative measurements of the changes in K+ activity (aK) in the vacuole and cytosol of barley (Hordeum vulgare L.) root cells grown in different K+ concentrations. The electrodes incorporate a pH-selective barrel allowing each measurement to be assigned to either the cytosol or vacuole. The measurements revealed that vacuolar aK declined linearly with decreases in tissue K+ concentration, whereas cytosolic aK initially remained constant in both epidermal and cortical cells but then declined at different rates in each cell type. An unexpected finding was that cytoplasmic pH declined in parallel with cytosolic aK, but acidification of the cytosol with butyrate did not reveal any short-term link between these two parameters. These measurements show the very different responses of the vacuolar and cytosolic K+ pools to changes in K+ availability and also show that cytosolic K+ homeostasis differs quantitatively in different cell types. The data have been used in thermodynamic calculations to predict the need for, and likely mechanisms of, active K+ transport into the vacuole and cytosol. The direction of active K+ transport at the vacuolar membrane changes with tissue K+ status.
Resumo:
Reestablishment of the resting state after stimulus-coupled elevations of cytosolic-free Ca2+ requires the rapid removal of Ca2+ from the cytosol of plant cells. Here we describe the isolation of two genes, CAX1 and CAX2, from Arabidopsis thaliana that suppress a mutant of Saccharomyces cerevisiae that has a defect in vacuolar Ca2+ accumulation. Both genes encode polypeptides showing sequence similarities to microbial H+/Ca2+ antiporters. Experiments on vacuolar membrane-enriched vesicles isolated from yeast expressing CAX1 or CAX2 demonstrate that these genes encode high efficiency and low efficiency H+/Ca2+ exchangers, respectively. The properties of the CAX1 gene product indicate that it is the high capacity transporter responsible for maintaining low cytosolic-free Ca2+ concentrations in plant cells by catalyzing pH gradient-energized vacuolar Ca2+ accumulation.
Resumo:
A Saccharomyces cerevisiae strain with a disrupted yeast cadmium resistance factor (YCF1) gene (DTY168) is hypersensitive to cadmium. YCF1 resembles the human multidrug resistance-associated protein MRP (63% amino acid similarity), which confers resistance to various cytotoxic drugs by lowering the intracellular drug concentration. Whereas the mechanism of action of YCF1 is not known, MRP was recently found to transport glutathione S-conjugates across membranes. Here we show that expression of the human MRP cDNA in yeast mutant DTY168 cells restores cadmium resistance to the wild-type level. Transport of S-(2,4-dinitrobenzene)-glutathione into isolated yeast microsomal vesicles is strongly reduced in the DTY168 mutant and this transport is restored to wild-type level in mutant cells expressing MRP cDNA. We find in cell fractionation experiments that YCF1 is mainly localized in the vacuolar membrane in yeast, whereas MRP is associated both with the vacuolar membrane and with other internal membranes in the transformed yeast cells. Our results indicate that yeast YCF1 is a glutathione S-conjugate pump, like MRP, and they raise the possibility that the cadmium resistance in yeast involves cotransport of cadmium with glutathione derivatives.